Nonlinear Elliptic Partial Difference Equations on Graphs

This article furthers the study of nonlinear elliptic partial difference equations (PdE) on graphs. We seek solutions u : V → ℝ to the semilinear elliptic partial difference equation -Lu+ƒ(u) = 0 on a graph G = (V,E), where L is the (negative) Laplacian on the graph G. We extend techniques used to prove existence theorems and derive numerical algorithms for the partial differential equation (PDE) Δu+ƒ(u) = 0. In particular, we prove the existence of sign-changing solutions and solutions with symmetry in the superlinear case. Developing variants of the mountain pass, modified mountain pass, and gradient Newton–Galerkin algorithms for our discrete nonlinear problem, we compute and describe many solutions. Letting ƒ = ƒ(λ, u), we construct bifurcation diagrams and relate the results to the developed theory.

[1]  P. J. McKenna,et al.  ON MULTIPLE SOLUTIONS OF A NONLINEAR DIRICHLET PROBLEM , 1980 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  John M. Neuberger,et al.  Newton's Method and Morse Index for semilinear Elliptic PDEs , 2001, Int. J. Bifurc. Chaos.

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  Y. V. Pokornyi,et al.  Some problems of the qualitative Sturm-Liouville theory on a spatial network , 2004 .

[6]  Chen Hui EVENTUALLY POSITIVE SOLUTIONS OF NONLINEAR NEUTRAL DIFFERENCE EQUATION , 2001 .

[7]  John M. Neuberger,et al.  A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems , 1998 .

[8]  A R Bishop,et al.  Continuum approach to discreteness. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Allaberen Ashyralyev,et al.  New Difference Schemes for Partial Differential Equations , 2004 .

[10]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[11]  John M. Neuberger A sign-changing solution for a superlinear Dirichlet problem with a reaction term nonzero at zero , 1998 .

[12]  John M. Neuberger,et al.  Computing eigenfunctions on the Koch Snowflake: a new grid and symmetry , 2006, 1010.0775.

[13]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[14]  J. M. Neuberger A numerical method for finding sign-changing solutions of superlinear Dirichlet problems , 1996 .

[15]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[16]  Sui Sun Cheng,et al.  Existence of Monotone Positive Solution of Neutral Partial Difference Equation , 2000 .

[17]  A. Castro,et al.  A sign-changing solution for a superlinear Dirichlet problem with a reaction term nonzero at zero , 1997 .

[18]  Guanrong Chen,et al.  Oscillations of Second-Order Nonlinear Partial Difference Equations , 2004 .

[19]  Saber N. Elaydi,et al.  GEOMETRY OF FIRST INTEGRALS FOR 2ND ORDER DIFFERENCE EQUATIONS , 2000 .

[20]  C. V. Pao,et al.  Entire Solutions of Discrete Elliptic Equations , 2003 .

[21]  Yong-Liang Pan,et al.  A note on the second largest eigenvalue of the laplacian matrix of a graph , 2000 .

[22]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[23]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[24]  John M. Neuberger,et al.  A numerical investigation of sign-changing solutions to superlinear elliptic equations on symmetric domains , 2001 .

[25]  Y. Choi,et al.  A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .

[26]  John William Neuberger,et al.  Sobolev gradients and differential equations , 1997 .

[27]  John M. Neuberger,et al.  A reduction algorithm for sublinear Dirichlet problems , 2001 .

[28]  C. V. Pao,et al.  Block monotone iterative methods for numerical solutions of nonlinear elliptic equations , 2022 .

[29]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[30]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[31]  Guang Zhang,et al.  Existence of solutions for a nonlinear system with a parameter , 2006 .

[32]  John M. Neuberger,et al.  Numerical Solutions of a Vector Ginzburg-landau equation with a Triple-Well Potential , 2003, Int. J. Bifurc. Chaos.

[33]  Guang Zhang Existence of nontrivial solutions for discrete elliptic boundary value problems , 2006 .