Near-field optics: a new tool for data storage

Evanescent energy can be used to produce extremely small optical spots. Two practical implementations that use evanescent energy are aperture probes and solid immersion lenses (SILs). For data storage, the optical near field is defined in terms of evanescent coupling between the system used to read data and the recording layer. Because of the small spot size, near-field techniques are applied to optical data storage systems in order to increase recording density. Both aperture-type systems and SIL systems show good promise of achieving densities of more than 150 Gb/in/sup 2/. The characteristics and performance of several systems are compared, and future near-field technologies are discussed.

[1]  T. Milster,et al.  Detection of probe dither motion in near-field scanning optical microscopy. , 1995, Applied optics.

[2]  Kiyoshi Osato,et al.  Optical disk recording using a GaN blue laser diode , 1999, Optical Data Storage.

[3]  Ray T. Chen,et al.  LASERS, OPTICS, AND OPTOELECTRONICS 151 Transmitted signal detection of optical disks with a superresolution near-field structure , 1999 .

[4]  A. Marchant Optical Recording: A Technical Overview , 1990 .

[5]  Benno Tieke,et al.  High Data-Rate Phase-Change Media for the Digital Video Recording System , 2000 .

[6]  G. Kino,et al.  Solid immersion microscope , 1990 .

[7]  Tomas D. Milster,et al.  High-density phase-change optical recording using a solid immersion lens , 1998, Other Conferences.

[8]  G. S. Kino,et al.  High-numerical-aperture lens system for optical storage , 1993 .

[9]  Takashi Nakano,et al.  The Near-Field Super-Resolution Properties of an Antimony Thin Film , 1998 .

[10]  K. Hirota,et al.  Roles of propagating and evanescent waves in solid immersion lens systems. , 1999, Applied optics.

[11]  Shingo Imanishi,et al.  Near-field optical head on disk mastering process , 1999, Optical Data Storage.

[12]  Bruce D. Terris,et al.  Near‐field optical data storage , 1996 .

[13]  Yoshitada Katagiri,et al.  Optical heads based on coupled-cavity laser diode , 1995, Other Conferences.

[14]  Masahiko Sano,et al.  INGAN/GAN/ALGAN-BASED LASER DIODES WITH CLEAVED FACETS GROWN ON GAN SUBSTRATES , 1998 .

[15]  Matthias Wuttig,et al.  High-power laser light source for near-field optics and its application to high-density optical data storage , 1999 .

[16]  Yuji Kuroda,et al.  Near-field phase-change optical recording over 1.2 numerical aperture , 1999, Optical Data Storage.

[17]  T. Milster,et al.  Heating mechanisms in a near-field optical system. , 1997, Applied optics.

[18]  Y. Martin,et al.  Optical data storage read out at 256 Gbits/in.2 , 1997 .

[19]  Yan Zhang,et al.  Near-field phase-change optical recording using a GaP hemispherical lens , 1999, Optical Data Storage.

[20]  Bruce D. Terris,et al.  Near‐field optical data storage using a solid immersion lens , 1994 .

[21]  G. Fowles,et al.  Introduction to modern optics , 1968 .

[22]  Takashi Nakano,et al.  Optical switching property of a light-induced pinhole in antimony thin film , 1999 .

[23]  M. Kryder,et al.  Near‐field magneto‐optics and high density data storage , 1992 .

[24]  Warren J. Smith Modern Lens Design , 1992 .

[25]  Kenya Goto High bit rate and terabytes optical memory in a disk system , 1997, Other Conferences.

[26]  K. Hirota,et al.  Pupil Plane Filtering for Optical Pickup Heads with Effective Numerical Aperture of 1.1 and 2.0 , 2000 .