Constant-time solution to the global optimization problem using Brüschweiler's ensemble search algorithm

A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Bruschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.

[1]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[2]  P. Pardalos,et al.  State of the art in global optimization: computational methods and applications , 1996 .

[3]  Arthur O. Pittenger,et al.  An Introduction to Quantum Computing Algorithms , 2000 .

[4]  Rafael Brüschweiler Novel strategy for database searching in spin liouville space by NMR ensemble computing , 2000 .

[5]  G. Long,et al.  Experimental Realization of Br\"{u}schweiler's exponentially fast search algorithm in a homo-nuclear system , 2001, quant-ph/0112161.

[6]  Rafael Brüschweiler,et al.  One- and two-dimensional ensemble quantum computing in spin Liouville space , 1998 .

[7]  Jun Luo,et al.  Modification and realization of Brüschweiler's search , 2002 .

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[9]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[10]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[11]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[12]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[13]  Ultrahigh sensitivity detector for coherent light: the laser , 2000 .

[14]  W. Hager,et al.  Large Scale Optimization : State of the Art , 1993 .

[15]  G. Long,et al.  Experimental realization of the Brüschweiler's algorithm in a homonuclear system , 2002 .

[16]  Jacob Barhen,et al.  Solving a class of continuous global optimization problems using quantum algorithms , 2002 .

[17]  Jacob Barhen,et al.  TRUST: A deterministic algorithm for global optimization , 1997 .

[18]  C. D'Helon,et al.  New summing algorithm using ensemble computing , 2002 .

[19]  G. Long,et al.  Fetching marked items from an unsorted database in NMR ensemble computing , 2001, quant-ph/0112162.

[20]  Anatoly K Khitrin,et al.  NMR implementation of a parallel search algorithm. , 2002, Physical review letters.

[21]  Donald R. Smith Variational methods in optimization , 1974 .

[22]  Jacob Barhen,et al.  Generalized TRUST Algorithms for Global Optimization , 1996 .