Tikhonov regularization and a posteriori rules for solving nonlinear ill posed problems

Besides a priori parameter choice we study a posteriori rules for choosing the regularization parameter α in the Tikhonov regularization method for solving nonlinear ill posed problems F (x) = y, namely a rule 1 of Scherzer et al (Scherzer O, Engl H W and Kunisch K 1993 SIAM J. Numer. Anal. 30 1796–838) and a new rule 2 which is a generalization of the monotone error rule of Tautenhahn and Hamarik (Tautenhahn U and Hamarik U 1999 Inverse Problems 15 1487–505) to the nonlinear case. We suppose that instead of y there are given noisy data yδ satisfying |y − yδ| ≤ δ with known noise level δ and prove that rule 1 and rule 2 yield order optimal convergence rates O(δp/(p+1)) for the ranges p (0, 2] and p (0, 1], respectively. Compared with foregoing papers our order optimal convergence rate results have been obtained under much weaker assumptions which is important in engineering practice. Numerical experiments verify some of the theoretical results.

[1]  Andreas Neubauer,et al.  Tikhonov regularisation for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation , 1989 .

[2]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[3]  A. G. Yagola,et al.  Numerical solution of nonlinear ill-posed problems , 1998 .

[4]  Jin Qi-nian,et al.  A convergence analysis for Tikhonov regularization of nonlinear ill-posed problems , 1999 .

[5]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[6]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[7]  Otmar Scherzer,et al.  Factors influencing the ill-posedness of nonlinear problems , 1994 .

[8]  A. Bakushinskii Remarks on choosing a regularization parameter using the quasioptimality and ratio criterion , 1985 .

[9]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[10]  C. Kravaris,et al.  Identification of parameters in distributed parameter systems by regularization , 1983, The 22nd IEEE Conference on Decision and Control.

[11]  Bernd Hofmann,et al.  On autoconvolution and regularization , 1994 .

[12]  A. Tikhonov,et al.  Nonlinear Ill-Posed Problems , 1997 .

[13]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[14]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[15]  Qinian Jin,et al.  On the choice of the regularization parameter for ordinary and iterated Tikhonov regularization of nonlinear ill-posed problems , 1997 .

[16]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[17]  J. Baumeister Stable solution of inverse problems , 1987 .

[18]  B. Hofmann Regularization for Applied Inverse and III-Posed Problems , 1986 .

[19]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[20]  Ulrich Tautenhahn,et al.  Tikhonov Regularization for Identification Problems in Differential Equations , 1996 .

[21]  D. Schweigert,et al.  Effective Numerical Methods for Solving Implicit Ill-Posed Inverse Problems , 1992 .

[22]  A. Louis Inverse und schlecht gestellte Probleme , 1989 .

[23]  Qinian Jin,et al.  On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems , 1999, Numerische Mathematik.

[24]  J. Köhler,et al.  Error bounds for regularized solutions of nonlinear ill-posed problems , 1995 .

[25]  Uno Hämarik,et al.  The use of monotonicity for choosing the regularization parameter in ill-posed problems , 1999 .

[26]  H. Gfrerer An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates , 1987 .

[27]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[28]  U Tautenhahn,et al.  Error estimates for regularized solutions of non-linear ill-posed problems , 1994 .

[29]  H. Engl,et al.  Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems , 1993 .