The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys

Corrosion was studied in vitro in Nor’s solution (CO2 – bicarbonate buffered Hank’s solution) at 37 C, and in vivo implanted in the lower back muscle of rats. Nor’s solution is a good model for HP Mg and WZ21, because (i) the pH is maintained by the same buffer as in blood and (ii) concentrations of corrosive chloride ions, and other inorganic constituents, are similar to those in blood. The higher in vitro corrosion rate of AZ91 was caused by micro-galvanic from second phases. The lower in vivo corrosion rate of AZ91 was tentatively attributed to suppression of micro-galvanic corrosion by tissue encapsulation. 2013 Elsevier Ltd. All rights reserved.

[1]  Dexter Kozen,et al.  New , 2020, MFPS.

[2]  L. Segal John , 2013, The Messianic Secret.

[3]  A. Atrens,et al.  Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting , 2012 .

[4]  A. Atrens,et al.  Galvanostatic anodic polarisation curves and galvanic corrosion of high purity Mg in 3.5% NaCl saturated with Mg(OH)2 , 2012 .

[5]  Tim Woodfield,et al.  Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[6]  B. Hensel,et al.  Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid , 2012 .

[7]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[8]  Ivonne Bartsch,et al.  New, fast corroding high ductility Mg–Bi–Ca and Mg–Bi–Si alloys, with no clinically observable gas formation in bone implants , 2011 .

[9]  Frank Witte,et al.  Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site , 2011 .

[10]  Sannakaisa Virtanen,et al.  Biodegradable Mg and Mg alloys: Corrosion and biocompatibility , 2011 .

[11]  Andrej Atrens,et al.  Corrosion mechanism applicable to biodegradable magnesium implants , 2011 .

[12]  V. Shanov,et al.  High purity biodegradable magnesium coating for implant application , 2011 .

[13]  Andrej Atrens,et al.  Summary of the panel discussions at the 2nd Symposium on Biodegradable Metals, Maratea, Italy, 2010 , 2011 .

[14]  Darren J. Martin,et al.  Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37 °C , 2011 .

[15]  Peter Hodgson,et al.  Microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for biomedical applications , 2011 .

[16]  T. Lüth,et al.  Biodegradable wound-closing devices for gastrointestinal interventions: Degradation performance of the magnesium tip , 2011 .

[17]  M. S. Yong,et al.  In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid , 2011 .

[18]  P. Chu,et al.  Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3 , 2011 .

[19]  M. Escudero,et al.  Biodegradation kinetics of modified magnesium-based materials in cell culture medium , 2011 .

[20]  M. Liu,et al.  The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys , 2010 .

[21]  Andrea Meyer-Lindenberg,et al.  Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: a comparative study in rabbits , 2010, Biomedical engineering online.

[22]  T. Woodfield,et al.  In-vitro dissolution of magnesium-calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[23]  P. Uggowitzer,et al.  On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. , 2010, Acta biomaterialia.

[24]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[25]  W. Zhou,et al.  Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid , 2010 .

[26]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[27]  Andrej Atrens,et al.  Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation , 2010 .

[28]  P. Uggowitzer,et al.  MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. , 2009, Nature materials.

[29]  K. Nogita,et al.  Engineering the Mg–Mg2Ni eutectic transformation to produce improved hydrogen storage alloys , 2009 .

[30]  C. Xie,et al.  In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy , 2009 .

[31]  G. Song,et al.  An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing , 2009 .

[32]  Akiko Yamamoto,et al.  Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro , 2009 .

[33]  M. Liu,et al.  Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys , 2009 .

[34]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[35]  M. Liu,et al.  Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 , 2008 .

[36]  M. Wei,et al.  Corrosion process of pure magnesium in simulated body fluid , 2008 .

[37]  R. Raman,et al.  In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. , 2008, Biomaterials.

[38]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[39]  James M. Anderson,et al.  Foreign body reaction to biomaterials. , 2008, Seminars in immunology.

[40]  G. Song,et al.  Influence of Homogenization Annealing of AZ91 on Mechanical Properties and Corrosion Behavior , 2008 .

[41]  G. Song,et al.  Influence of Microstructure on Corrosion of As‐cast ZE41 , 2008 .

[42]  Ke Yang,et al.  In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. , 2007, Journal of biomedical materials research. Part A.

[43]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[44]  G. J. Verkerke,et al.  Histological assessment of titanium and polypropylene fiber mesh implantation with and without fibrin tissue glue. , 2007, Journal of biomedical materials research. Part A.

[45]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[46]  F. Müller,et al.  Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. , 2006, Acta biomaterialia.

[47]  H. Doi,et al.  Improved Biocompatibility of Titanium-Zirconium (Ti-Zr) Alloy: Tissue Reaction and Sensitization to Ti-Zr Alloy Compared with Pure Ti and Zr in Rat Implantation Study , 2005 .

[48]  D. StJohn,et al.  Corrosion resistance of aged die cast magnesium alloy AZ91D , 2004 .

[49]  G. Song,et al.  Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance , 2003 .

[50]  D. StJohn,et al.  The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ , 2002 .

[51]  G. Song,et al.  Corrosion mechanisms of magnesium alloys , 1999 .

[52]  M. Dargusch,et al.  Influence of microstructure on the corrosion of diecast AZ91D , 1998 .

[53]  J. Jansen,et al.  Histological Assessment of Sintered Metal- Fibre-Web Materials , 1994, Journal of biomaterials applications.

[54]  A. Atrens,et al.  ESCA studies of Ni-Cr alloys , 1992 .

[55]  A. Atrens,et al.  ESCA studies of Cr-Co alloys , 1992 .

[56]  Denny A. Jones Principles and prevention of corrosion , 1991 .

[57]  A. Atrens,et al.  ESCA-studies of the structure and composition of the passive film formed on stainless steels by various immersion times in 0.1 M NaCl solution , 1987 .

[58]  P. Brüesch,et al.  Korrosion von rostfreien Stählen in Chloridlösungen. Eine XPS-Untersuchung der Passivfilme , 1984 .

[59]  Wei-jia Tang,et al.  On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction , 2012 .

[60]  A. Atrens,et al.  An innovative specimen configuration for the study of Mg corrosion , 2011 .

[61]  G. Song,et al.  Corrosion of magnesium (Mg) alloys and metallurgical influence , 2011 .

[62]  F. Wittea,et al.  In vivo corrosion of four magnesium alloys and the associated bone response , 2004 .

[63]  R. Kirchheim,et al.  Dissolution rates of iron and chromium and FeCralloys in the passive state , 1990 .

[64]  A. Schneider,et al.  AES analysis of pits and passive films formed on FeCr FeMo and FeCrMo alloys , 1990 .

[65]  H. Fischmeister,et al.  The passivity of iron-chromium alloys , 1989 .

[66]  A. Atrens,et al.  Corrosion of stainless steels in chloride solution: An XPS investigation of passive films , 1985 .

[67]  I. Olefjord,et al.  The Composition of the Surface during Passivation of Stainless Steels , 1982 .