Optimal Multi-Objective Nonlinear Impulsive Rendezvous

The multi-objective optimization of unperturbed two-body impulsive rendezvous is investigated in this paper. In addition to the total characteristic velocity and the time of rendezvous flight, the minimum relative distance between the chaser and the target in the chaser's free-flying path is proposed as another design performance index. The feasible iteration optimization model of three-objective impulsive rendezvous with path constraints including trajectory safety and field of view constraints is established using a Lambert algorithm. The multi-objective nondominated sorting genetic algorithm is employed to obtain the Pareto solution set. The -V-bar and +V-bar homing rendezvous missions are examined by the proposed approach. It is shown that tradeoffs between time of flight, propellant cost and passive trajectory safety, and several inherent principles of the rendezvous trajectory are demonstrated by this approach.

[1]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .

[2]  M. Handelsman,et al.  Primer Vector on Fixed-Time Impulsive Trajectories , 1967 .

[3]  D. J. Jezewski,et al.  An efficient method for calculating optimal free-space n-impulse trajectories. , 1968 .

[4]  John E. Prussing,et al.  Optimal four-impulse fixed-time rendezvous in the vicinity of a circular orbit. , 1969 .

[5]  John E. Prussing,et al.  Optimal two- and three-impulse fixed-time rendezvous in the vicinityof a circular orbit , 1970 .

[6]  John E. Prussing,et al.  Optimal Multiple-Impulse Direct Ascent Fixed-Time Rendezvous , 1974 .

[7]  J. B. Jones Optimal rendezvous in the neighborhood of a circular orbit , 1976 .

[8]  Frank C. Liu,et al.  Improved Solution of Optimal Impulsive Fixed-Time Rendezvous , 1982 .

[9]  John E. Prussing,et al.  Optimal multiple-impulse time-fixed rendezvous between circular orbits , 1984 .

[10]  Der-Ren Taur,et al.  Optimal Impulsive Time-Fixed Orbital Rendezvous and Interception with Path Constraints , 1989 .

[11]  D. Jezewski Optimal rendezvous trajectories subject to arbitrary perturbations and constraints , 1992 .

[12]  S. M. Marsh,et al.  Trajectory design and navigation analysis for Cargo Transfer Vehicle proximity operations , 1992 .

[13]  Analysis and planning for precise orbital maneuvers , 1992 .

[14]  Z. Michalewicz,et al.  A modified genetic algorithm for optimal control problems , 1992 .

[15]  D. J. Jezewski,et al.  Operational constraints in optimal, impulsive, rendezvous trajectories , 1993 .

[16]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[17]  Thomas Carter,et al.  Linearized impulsive rendezvous problem , 1995 .

[18]  John W. Hartmann,et al.  OPTIMAL INTERPLANETARY SPACECRAFT TRAJECTORIES VIA A PARETO GENETIC ALGORITHM , 1998 .

[19]  Sergio A. Alvarez,et al.  Quadratic-Based Computation of Four-Impulse Optimal Rendezvous near Circular Orbit , 2000 .

[20]  John W. Hartmann,et al.  Optimal multi-objective low-thrust spacecraft trajectories , 2000 .

[21]  Colin R. McInnes,et al.  Safety Constrained Free-Flyer Path Planning at the International Space Station , 2000 .

[22]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[23]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[24]  David B. Spencer,et al.  Optimal Spacecraft Rendezvous Using Genetic Algorithms , 2002 .

[25]  Panagiotis Tsiotras,et al.  Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions , 2003 .

[26]  John E. Prussing,et al.  Optimal Two- and Three-Impulse Fixed-Time Rendezvous in the Vicinity of a Circular Orbit , 2003 .

[27]  Wigbert Fehse,et al.  Automated Rendezvous and Docking of Spacecraft , 2003 .

[28]  Guo-Jin Tang,et al.  Parallel Simulated Annealing Using Simplex Method , 2004 .

[29]  Ya-zhong Luo,et al.  Optimization of multiple-impulse minimum-time rendezvous with impulse constraints using a hybrid genetic algorithm , 2006 .

[30]  Guo-Jin Tang,et al.  Optimization of perturbed and constrained fuel-optimal impulsive rendezvous using a hybrid approach , 2006 .

[31]  Y. Lei,et al.  Optimal Multi-Objective Linearized Impulsive Rendezvous , 2007 .

[32]  Guo-Jin Tang,et al.  Multi-Objective Optimization of Perturbed Impulsive Rendezvous Trajectories Using Physical Programming , 2008 .