Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics

A quadratic eigenvalue problem arising in the determination of the vibration modes of an acoustic fluid contained in a cavity with absorbing walls is considered. The problem is shown to be equivalent to the spectral problem for a noncompact operator and a thorough spectral characterization is given. A numerical discretization based on Raviart--Thomas finite elements is analyzed. The method is proved to be free of spurious modes and to converge with optimal order. Implementation issues and numerical experiments confirming the theoretical results are reported.

[1]  Alfredo Bermúdez,et al.  Finite element computation of the vibrations of a plate-fluid system with interface damping , 2001 .

[2]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[3]  H. Langer,et al.  On some mathematical principles in the linear theory of damped oscillations of continua I , 1978 .

[4]  JEAN DESCLOUX,et al.  On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .

[5]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[6]  Alfredo Bermúdez,et al.  Finite element computation of the vibration modes of a fluid—solid system , 1994 .

[7]  R. Goodrich,et al.  Spectral approximation , 1986 .

[8]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[9]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[10]  Rodolfo Rodríguez,et al.  The order of convergence of Eigenfrequencies in finite element approximations of fluid-structure interaction problems , 1996, Math. Comput..

[11]  Alfredo Bermúdez,et al.  FINITE ELEMENT COMPUTATION OF THREE-DIMENSIONAL ELASTOACOUSTIC VIBRATIONS , 1999 .

[12]  Alfredo Bermúdez,et al.  Modelling and numerical solution of elastoacoustic vibrations with interface damping , 1999 .

[13]  H. Langer,et al.  On some mathematical principles in the linear theory of damped oscilations of continua II , 1978 .

[14]  Robert L. Taylor,et al.  Vibration analysis of fluid-solid systems using a finite element displacement formulation , 1990 .

[15]  J. Rappaz,et al.  On spectral approximation. Part 1. The problem of convergence , 1978 .

[16]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[17]  Chen Yu On Stabilized Mixed Finite Element Methods in Fluid Structure Systems , 2000 .

[18]  K. Bathe,et al.  A mixed displacement-based finite element formulation for acoustic fluid-structure interaction , 1995 .

[19]  Lucia Gastaldi,et al.  Mixed finite element methods in fluid structure systems , 1996 .

[20]  K. Bathe,et al.  DISPLACEMENT/PRESSURE BASED MIXED FINITE ELEMENT FORMULATIONS FOR ACOUSTIC FLUID–STRUCTURE INTERACTION PROBLEMS , 1997 .

[21]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[22]  Yves Ousset,et al.  A displacement method for the analysis of vibrations of coupled fluid-structure systems , 1978 .

[23]  A. Bermúdez,et al.  Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .