Thermal structure and cooling of neutron stars with magnetized envelopes

The thermal structure of neutron stars with magnetized envelopes is studied using modern physics input. The relation between the internal (Tint) and local surface temperatures is calculated and tted by analytic expressions for magnetic eld strengths B from 0 to 10 16 G and arbitrary inclination of the eld lines to the surface. The luminosity of a neutron star with dipole magnetic eld is calculated and tted as a function of B, Tint, stellar mass and radius. In addition, we simulate cooling of neutron stars with magnetized envelopes. In particular, we analyse ultramagnetized envelopes of magnetars and also the eects of the magnetic eld of the Vela pulsar on the determination of critical temperatures of neutron and proton superfluids in its core.

[1]  V. Burwitz,et al.  The X-Ray Spectrum of the Vela Pulsar Resolved with the Chandra X-Ray Observatory , 2001, astro-ph/0103171.

[2]  O. Gnedin,et al.  Thermal relaxation in young neutron stars , 2000, astro-ph/0012306.

[3]  A. Broderick,et al.  The Equation of State of Neutron Star Matter in Strong Magnetic Fields , 2000, astro-ph/0001537.

[4]  G. Mathews,et al.  Cold Ideal Equation of State for Strongly Magnetized Neutron Star Matter: Effects on Muon Production and Pion Condensation , 1999, astro-ph/9912301.

[5]  Y. Shibanov,et al.  REVIEWS OF TOPICAL PROBLEMS: Cooling of neutron stars and superfluidity in their cores , 1999, astro-ph/9906456.

[6]  D. Baiko,et al.  Ion structure factors and electron transport in dense Coulomb plasmas , 1998, physics/9811052.

[7]  Tod Strohmayer,et al.  Discovery of a Magnetar Associated with the Soft Gamma Repeater SGR 1900+14 , 1998, astro-ph/9809140.

[8]  G. Chabrier,et al.  Equation of state of fully ionized electron-ion plasmas. II. Extension To relativistic densities and to the solid phase , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  K. Hurley,et al.  An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 − 20 , 1998, Nature.

[10]  J. Heyl,et al.  Almost analytic models of ultramagnetized neutron star envelopes , 1998, astro-ph/9805175.

[11]  V. Urpin,et al.  Magnetic and spin evolution of isolated neutron stars with the crustal magnetic field , 1997, astro-ph/9801077.

[12]  J. Yngvason,et al.  Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars. II. Finite Temperature Effects , 1997, astro-ph/9711091.

[13]  J. Heyl,et al.  The Thermal Evolution of Ultramagnetized Neutron Stars , 1997, astro-ph/9710218.

[14]  J. Heyl,et al.  Powering Anomalous X-Ray Pulsars by Neutron Star Cooling , 1997, astro-ph/9708179.

[15]  D. Page Fast Cooling of Neutron Stars: Superfluidity versus Heating and Accreted Envelope , 1996, astro-ph/9610191.

[16]  R. Romani,et al.  Magnetized Iron Atmospheres for Neutron Stars , 1996, astro-ph/9610177.

[17]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[18]  F. Camilo,et al.  Very low braking index for the Vela pulsar , 1996, Nature.

[19]  C. Thompson,et al.  The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts , 1995 .

[20]  G. Chabrier,et al.  The Equation of State in Astrophysics , 1994 .

[21]  D. Page Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields , 1994, astro-ph/9407015.

[22]  R. N. Manchester,et al.  Catalog of 558 pulsars , 1993 .

[23]  C. Pethick Cooling of neutron stars , 1992 .

[24]  D. Page,et al.  The cooling of neutron stars by the direct Urca process , 1992 .

[25]  K. Riper Neutron star thermal evolution , 1991 .

[26]  J. Lattimer,et al.  Equation of state and the maximum mass of neutron stars. , 1988, Physical review letters.

[27]  Van Riper,et al.  Magnetic neutron star atmospheres , 1988 .

[28]  David G. Hummer,et al.  A fast and accurate method for evaluating the nonrelativistic free-free Gaunt factor for hydrogenic ions , 1988 .

[29]  L. Hernquist Thermal structure of magnetized neutron-star envelopes , 1985 .

[30]  L. Hernquist Relativistic electron transport in a quantizing magnetic field , 1984 .

[31]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[32]  E. H. Gudmundsson,et al.  Structure of neutron star envelopes , 1983 .

[33]  G. Greenstein,et al.  Pulselike character of blackbody radiation from neutron stars. , 1983 .

[34]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[35]  R. Blandford,et al.  Magnetic susceptibility of a neutron star crust , 1982 .

[36]  D. G. Yakovlev,et al.  Description of a relativistic electron in a quantizing magnetic field. Transverse transport coefficients of an electron gas , 1981 .

[37]  D. G. Yakovlev,et al.  Radiative heat transfer in surface layers of neutron stars with a magnetic field , 1980 .

[38]  K. Thorne,et al.  The relativistic equations of stellar structure and evolution. Stars with degenerate neutron cores. 1: Structure of equilibrium models , 1976 .

[39]  J. Negele,et al.  Neutron star matter at sub-nuclear densities , 1973 .

[40]  R. Latter,et al.  Electron Radiative Transitions in a Coulomb Field , 1961 .

[41]  E.P.J. van den Heuvel,et al.  The Neutron Star-Black Hole Connection , 2001 .

[42]  J. van Paradijs,et al.  The many faces of neutron stars , 1998 .

[43]  Y. Shibanov,et al.  Evolution of Thermal Structure and Radiation Spectrum of Cooling Neutron Stars , 1998 .

[44]  Forrest J. Rogers,et al.  Opal equation-of-state tables for astrophysical applications , 1996 .

[45]  D. G. Yakovlev,et al.  The Equation of State in Astrophysics: Neutron star crusts with magnetic fields , 1994 .

[46]  K. Nomoto,et al.  Cooling of Neutron Stars: Effects of the Finite Time Scale of Thermal Conduction , 1987 .