The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients

Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia , highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen. solanacearum amplification according to the supplied protocols, the optional of of 94°C followed of suitable annealing

[1]  Eduardo P C Rocha,et al.  The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients , 2008, Journal of bacteriology.

[2]  Adam Baldwin,et al.  Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. , 2009, International journal of systematic and evolutionary microbiology.

[3]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[4]  Alan R. Brown,et al.  Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex. , 2008, Microbiology.

[5]  P. Vandamme,et al.  Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. , 2008, International journal of systematic and evolutionary microbiology.

[6]  C. Dowson,et al.  Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology , 2008, Journal of applied microbiology.

[7]  L. M. Moreira,et al.  Differential Mucoid Exopolysaccharide Production by Members of the Burkholderia cepacia Complex , 2008, Journal of Clinical Microbiology.

[8]  C. Dowson,et al.  Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing. , 2007, Environmental microbiology.

[9]  M. Vasil,et al.  Characterization of two distinct phospholipase C enzymes from Burkholderia pseudomallei. , 2007, Microbiology.

[10]  J. Mrázek,et al.  Type VI secretion is a major virulence determinant in Burkholderia mallei , 2007, Molecular microbiology.

[11]  F. Zanetti,et al.  Exopolysaccharides produced by clinical strains belonging to the Burkholderia cepacia complex. , 2007, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[12]  Alan R. Brown,et al.  A Putative Gene Cluster for Aminoarabinose Biosynthesis Is Essential for Burkholderia cenocepacia Viability , 2007, Journal of bacteriology.

[13]  Adam Baldwin,et al.  Environmental Burkholderia cepacia Complex Isolates from Human Infections , 2007, Emerging infectious diseases.

[14]  S. Grinstein,et al.  Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria‐containing vacuoles , 2007, Cellular microbiology.

[15]  Sharon J Peacock,et al.  Burkholderia Hep_Hap autotransporter (BuHA) proteins elicit a strong antibody response during experimental glanders but not human melioidosis , 2007, BMC Microbiology.

[16]  I. Beacham,et al.  Temperature-Regulated Microcolony Formation by Burkholderia pseudomallei Requires pilA and Enhances Association with Cultured Human Cells , 2006, Infection and Immunity.

[17]  G. Manina,et al.  Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome , 2006, BMC Microbiology.

[18]  C Anthony Hart,et al.  Caenorhabditis elegans killing assay as an infection model to study the role of type III secretion in Burkholderia cenocepacia. , 2006, Journal of medical microbiology.

[19]  P. Sokol,et al.  Burkholderia cenocepacia ZmpB Is a Broad-Specificity Zinc Metalloprotease Involved in Virulence , 2006, Infection and Immunity.

[20]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[21]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Mark S. Thomas,et al.  The Ornibactin Biosynthesis and Transport Genes of Burkholderia cenocepacia Are Regulated by an Extracytoplasmic Function σ Factor Which Is a Part of the Fur Regulon , 2006, Journal of bacteriology.

[23]  David DeShazer,et al.  Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis , 2006, BMC Microbiology.

[24]  M. Valvano,et al.  A Complete Lipopolysaccharide Inner Core Oligosaccharide Is Required for Resistance of Burkholderia cenocepacia to Antimicrobial Peptides and Bacterial Survival In Vivo , 2006, Journal of bacteriology.

[25]  Adam Baldwin,et al.  Multilocus Sequence Typing Scheme That Provides Both Species and Strain Differentiation for the Burkholderia cepacia Complex , 2005, Journal of Clinical Microbiology.

[26]  J. Goldberg,et al.  Cable Pili and the 22-Kilodalton Adhesin Are Required for Burkholderia cenocepacia Binding to and Transmigration across the Squamous Epithelium , 2005, Infection and Immunity.

[27]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[28]  L. Burrows Weapons of mass retraction , 2005, Molecular microbiology.

[29]  C. Corbett,et al.  Functional Analysis of the Burkholderia cenocepacia ZmpA Metalloprotease , 2005, Journal of bacteriology.

[30]  H. Goldfine,et al.  Phosphatidylinositol-Specific Phospholipase C of Bacillus anthracis Down-Modulates the Immune Response1 , 2005, The Journal of Immunology.

[31]  Brian D Sykes,et al.  DNA Binding: a Novel Function of Pseudomonas aeruginosa Type IV Pili , 2005, Journal of bacteriology.

[32]  Joanna B. Goldberg,et al.  Reconstitution of O-Specific Lipopolysaccharide Expression in Burkholderia cenocepacia Strain J2315, Which Is Associated with Transmissible Infections in Patients with Cystic Fibrosis , 2005, Journal of bacteriology.

[33]  Joanna B. Goldberg,et al.  The multifarious, multireplicon Burkholderia cepacia complex , 2005, Nature Reviews Microbiology.

[34]  I. Beacham,et al.  A Type IV Pilin, PilA, Contributes to Adherence of Burkholderia pseudomallei and Virulence In Vivo , 2005, Infection and Immunity.

[35]  M. Dodd,et al.  Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis , 2004, Thorax.

[36]  P. Vandamme,et al.  Recovery of Burkholderia cenocepacia strain PHDC from cystic fibrosis patients in Europe , 2004, Thorax.

[37]  O. White,et al.  Structural flexibility in the Burkholderia mallei genome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Kim Rutherford,et al.  Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Eshwar Mahenthiralingam,et al.  Involvement of a Plasmid-Encoded Type IV Secretion System in the Plant Tissue Watersoaking Phenotype of Burkholderia cenocepacia , 2004, Journal of bacteriology.

[40]  S. Sørensen,et al.  Plasmid-Encoded Multidrug Efflux Pump Conferring Resistance to Olaquindox in Escherichia coli , 2004, Antimicrobial Agents and Chemotherapy.

[41]  Joanna B. Goldberg,et al.  Contribution of Burkholderia cenocepacia Flagella to Infectivity and Inflammation , 2004, Infection and Immunity.

[42]  M. Gerstein,et al.  Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes , 2004, Genome Biology.

[43]  S. Majumdar,et al.  Importance of the Ornibactin and Pyochelin Siderophore Transport Systems in Burkholderia cenocepacia Lung Infections , 2004, Infection and Immunity.

[44]  Y. Y. Chan,et al.  BpeAB-OprB, a Multidrug Efflux Pump in Burkholderia pseudomallei , 2004, Antimicrobial Agents and Chemotherapy.

[45]  Adam Baldwin,et al.  The Burkholderia cepacia Epidemic Strain Marker Is Part of a Novel Genomic Island Encoding Both Virulence and Metabolism-Associated Genes in Burkholderia cenocepacia , 2004, Infection and Immunity.

[46]  P. Nordmann,et al.  Resistance to Cefepime and Cefpirome Due to a 4-Amino-Acid Deletion in the Chromosome-Encoded AmpC β-Lactamase of a Serratia marcescens Clinical Isolate , 2004, Antimicrobial Agents and Chemotherapy.

[47]  J. Burns,et al.  Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). , 2004, The Journal of clinical investigation.

[48]  I. Chopra,et al.  Escherichia coli Mutators Present an Enhanced Risk for Emergence of Antibiotic Resistance during Urinary Tract Infections , 2004, Antimicrobial Agents and Chemotherapy.

[49]  G. Jung,et al.  Ornibactins—a new family of siderophores from Pseudomonas , 2004, Biometals.

[50]  S. Sousa,et al.  Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. , 2003, Biochemical and biophysical research communications.

[51]  I. Kukavica-Ibrulj,et al.  In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. , 2003, Environmental microbiology.

[52]  P. Lanotte,et al.  Pseudomonas aeruginosa and cystic fibrosis: Correlation between exoenzyme production and patient's clinical state , 2003, Pediatric pulmonology.

[53]  K. Poole,et al.  Contribution of the MexXY Multidrug Transporter to Aminoglycoside Resistance in Pseudomonas aeruginosa Clinical Isolates , 2003, Antimicrobial Agents and Chemotherapy.

[54]  M. Matsuura,et al.  Unusual Interaction of a Lipopolysaccharide Isolated from Burkholderia cepacia with Polymyxin B , 2003, Infection and Immunity.

[55]  C. Corbett,et al.  An extracellular zinc metalloprotease gene of Burkholderia cepacia. , 2003, Microbiology.

[56]  Richard A. Moore,et al.  Burkholderia pseudomallei Class A β-Lactamase Mutations That Confer Selective Resistance against Ceftazidime or Clavulanic Acid Inhibition , 2003, Antimicrobial Agents and Chemotherapy.

[57]  C. Allen,et al.  Characterization of a Ralstonia solanacearum operon required for polygalacturonate degradation and uptake of galacturonic acid. , 2003, Molecular plant-microbe interactions : MPMI.

[58]  T. Coenye,et al.  Identification by Subtractive Hybridization of a Novel Insertion Element Specific for Two Widespread Burkholderia cepacia Genomovar III Strains , 2003, Journal of Clinical Microbiology.

[59]  C. Belka,et al.  Apoptotic Response of Chang Cells to Infection with Pseudomonas aeruginosa Strains PAK and PAO-I: Molecular Ordering of the Apoptosis Signaling Cascade and Role of Type IV Pili , 2003, Infection and Immunity.

[60]  M. Valvano,et al.  Identification and molecular analysis of cable pilus biosynthesis genes in Burkholderia cepacia. , 2003, Microbiology.

[61]  Tom Coenye,et al.  Burkholderia cenocepacia sp. nov.--a new twist to an old story. , 2003, Research in microbiology.

[62]  C. Herfst,et al.  Attenuated Virulence of a Burkholderia cepacia Type III Secretion Mutant in a Murine Model of Infection , 2003, Infection and Immunity.

[63]  C. Anthony Hart,et al.  Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes , 2003, Archives of Microbiology.

[64]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[65]  Keya Chaudhuri,et al.  Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis , 2003, Silico Biol..

[66]  Anders Krogh,et al.  EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance , 2003, BMC Bioinformatics.

[67]  M. Valvano,et al.  Cloning and characterization of the Burkholderia vietnamiensis norM gene encoding a multi-drug efflux protein. , 2002, FEMS microbiology letters.

[68]  Guillaume Pavlovic,et al.  The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. , 2002, Plasmid.

[69]  P. Vandamme,et al.  Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. , 2002, The Journal of antimicrobial chemotherapy.

[70]  A. Yamaguchi,et al.  The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter System, MdtABC , 2002, Journal of bacteriology.

[71]  H. Goldfine,et al.  Mobilization of Protein Kinase C in Macrophages Induced by Listeria monocytogenes Affects Its Internalization and Escape from the Phagosome , 2002, Infection and Immunity.

[72]  R. Read,et al.  Flavohemoglobin Hmp Protects Salmonella enterica Serovar Typhimurium from Nitric Oxide-Related Killing by Human Macrophages , 2002, Infection and Immunity.

[73]  T. Coenye,et al.  An epidemic Burkholderia cepacia complex strain identified in soil , 2002, The Lancet.

[74]  C. Herfst,et al.  Role of Flagella in Host Cell Invasion by Burkholderia cepacia , 2002, Infection and Immunity.

[75]  M. Corey,et al.  Epidemiology of Burkholderia cepacia Complex in Patients with Cystic Fibrosis, Canada , 2002, Emerging infectious diseases.

[76]  J. Weissenbach,et al.  Genome sequence of the plant pathogen Ralstonia solanacearum , 2002, Nature.

[77]  Amos Bairoch,et al.  The PROSITE database, its status in 2002 , 2002, Nucleic Acids Res..

[78]  S. Magnet,et al.  Resistance-Nodulation-Cell Division-Type Efflux Pump Involved in Aminoglycoside Resistance in Acinetobacter baumannii Strain BM4454 , 2001, Antimicrobial Agents and Chemotherapy.

[79]  C. Raetz,et al.  An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. , 2001, The Journal of biological chemistry.

[80]  P. Vandamme,et al.  Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[81]  J. Lipuma,et al.  Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. , 2001, The Journal of pediatrics.

[82]  X. Li,et al.  Fluoroquinolone susceptibilities of efflux-mediated multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia. , 2001, The Journal of antimicrobial chemotherapy.

[83]  Thomas V. O'Halloran,et al.  The Independent cue and cusSystems Confer Copper Tolerance during Aerobic and Anaerobic Growth inEscherichia coli * , 2001, The Journal of Biological Chemistry.

[84]  P. Vandamme,et al.  Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. , 2001, International journal of systematic and evolutionary microbiology.

[85]  R. DeSalle,et al.  flp‐1, the first representative of a new pilin gene subfamily, is required for non‐specific adherence of Actinobacillus actinomycetemcomitans , 2001, Molecular microbiology.

[86]  G. Grass,et al.  The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. , 2001, Microbiology.

[87]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[88]  U. Sajjan,et al.  Preferential adherence of cable-piliated burkholderia cepacia to respiratory epithelia of CF knockout mice and human cystic fibrosis lung explants. , 2000, Journal of medical microbiology.

[89]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[90]  C. Mohr,et al.  Invasion and Intracellular Survival of Burkholderia cepacia , 2000, Infection and Immunity.

[91]  B. Finlay,et al.  The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen , 2000, Molecular microbiology.

[92]  S. Lory,et al.  Identification of Two Distinct Types of Flagellar Cap Proteins, FliD, in Pseudomonas aeruginosa , 2000, Infection and Immunity.

[93]  P. Vandamme,et al.  Diagnostically and Experimentally Useful Panel of Strains from the Burkholderia cepacia Complex , 2000, Journal of Clinical Microbiology.

[94]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[95]  M. Valvano,et al.  Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. , 1999, Microbiology.

[96]  H. Nikaido,et al.  Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides , 1999, Antimicrobial Agents and Chemotherapy.

[97]  T. Heulin,et al.  Differentiation of Burkholderia Species by PCR-Restriction Fragment Length Polymorphism Analysis of the 16S rRNA Gene and Application to Cystic Fibrosis Isolates , 1999, Journal of Clinical Microbiology.

[98]  Richard A. Moore,et al.  Efflux-Mediated Aminoglycoside and Macrolide Resistance in Burkholderia pseudomallei , 1999, Antimicrobial Agents and Chemotherapy.

[99]  C. Reimmann,et al.  Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa. , 1998, Microbiology.

[100]  Mikhail S. Gelfand,et al.  Combining diverse evidence for gene recognition in completely sequenced bacterial genomes , 1998, German Conference on Bioinformatics.

[101]  S. Lory,et al.  The Pseudomonas aeruginosa Flagellar Cap Protein, FliD, Is Responsible for Mucin Adhesion , 1998, Infection and Immunity.

[102]  A. Cox,et al.  Siderophore Production by Cystic Fibrosis Isolates of Burkholderia cepacia , 1998, Infection and Immunity.

[103]  A. Huletsky,et al.  Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator , 1997, Antimicrobial agents and chemotherapy.

[104]  E. Dabbs,et al.  Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic , 1997, Antimicrobial agents and chemotherapy.

[105]  P. Nordmann,et al.  OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[106]  D. Simpson,et al.  Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis , 1997, Journal of clinical microbiology.

[107]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[108]  A. Collmer,et al.  Characterization of the Agrobacterium vitis pehA gene and comparison of the encoded polygalacturonase with the homologous enzymes from Erwinia carotovora and Ralstonia solanacearum , 1997, Applied and environmental microbiology.

[109]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[110]  M E Campbell,et al.  Epidemiology of Burkholderia cepacia infection in patients with cystic fibrosis: analysis by randomly amplified polymorphic DNA fingerprinting , 1996, Journal of clinical microbiology.

[111]  H. Inokuchi,et al.  Cloning of a gene from Escherichia coli that confers resistance to fosmidomycin as a consequence of amplification. , 1996, Gene.

[112]  E. Chi,et al.  Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia , 1996, Infection and immunity.

[113]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[114]  K. Senoo,et al.  Cloning and sequence analysis of czc genes in Alcaligenes sp. strain CT14. , 1996, Bioscience, biotechnology, and biochemistry.

[115]  J. Burns,et al.  Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance , 1996, Antimicrobial agents and chemotherapy.

[116]  M. Riley,et al.  The emergence of a highly transmissible lineage of cbl+ Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain , 1995, Nature Medicine.

[117]  J. Govan,et al.  Biological activity of Burkholderia (Pseudomonas) cepacia lipopolysaccharide. , 1995, FEMS immunology and medical microbiology.

[118]  R. Goldstein,et al.  Structurally variant classes of pilus appendage fibers coexpressed from Burkholderia (Pseudomonas) cepacia , 1995, Journal of bacteriology.

[119]  S. Tyler,et al.  Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping , 1994, Journal of clinical microbiology.

[120]  J. Hearst,et al.  Molecular cloning and characterization of acrA and acrE genes of Escherichia coli , 1993, Journal of bacteriology.

[121]  D. Malo,et al.  Natural resistance to infection with intracellular parasites: Isolation of a candidate for Bcg , 1993, Cell.

[122]  U. Sajjan,et al.  Role of a 22-kilodalton pilin protein in binding of Pseudomonas cepacia to buccal epithelial cells , 1993, Infection and immunity.

[123]  M. Dodd,et al.  Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis , 1993, The Lancet.

[124]  S. Levy,et al.  Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli , 1993, Journal of bacteriology.

[125]  K. Lewis,et al.  Emr, an Escherichia coli locus for multidrug resistance. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[126]  K. Bertrand,et al.  Membrane topology of the pBR322 tetracycline resistance protein. TetA-PhoA gene fusions and implications for the mechanism of TetA membrane insertion. , 1992, The Journal of biological chemistry.

[127]  M. Corey,et al.  Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. , 1992, The Journal of clinical investigation.

[128]  H. Toyoda,et al.  Molecular cloning and characterization of the fusaric acid-resistance gene from Pseudomonas cepacia. , 1991, Agricultural and biological chemistry.

[129]  A. Cox,et al.  Ionizing groups in lipopolysaccharides of Pseudomonas cepacia in relation to antibiotic resistance , 1991, Molecular microbiology.

[130]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[131]  J. Navas,et al.  Nucleotide sequence and intracellular location of the product of the fosfomycin resistance gene from transposon Tn2921 , 1990, Antimicrobial Agents and Chemotherapy.

[132]  R. Hodges,et al.  Characterization of the Pseudomonas aeruginosa pilus adhesin: confirmation that the pilin structural protein subunit contains a human epithelial cell-binding domain , 1989, Infection and immunity.

[133]  J. Burns,et al.  Isolation and characterization of dihydrofolate reductase from trimethoprim-susceptible and trimethoprim-resistant Pseudomonas cepacia , 1989, Antimicrobial Agents and Chemotherapy.

[134]  J. Burns,et al.  Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability , 1989, Antimicrobial Agents and Chemotherapy.

[135]  S. Aronoff,et al.  Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a beta-lactam-resistant mutant and in resistant cystic fibrosis isolates , 1988, Antimicrobial Agents and Chemotherapy.

[136]  N. Chin,et al.  Isolation and characterization of a penicillinase from Pseudomonas cepacia 249 , 1988, Antimicrobial Agents and Chemotherapy.

[137]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[138]  P. H. Pritchard,et al.  Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway , 1987, Applied and environmental microbiology.

[139]  R. Hancock,et al.  Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia , 1987, Antimicrobial Agents and Chemotherapy.

[140]  R. Hancock,et al.  Involvement of outer membrane of Pseudomonas cepacia in aminoglycoside and polymyxin resistance , 1986, Antimicrobial Agents and Chemotherapy.

[141]  G. Campbell,et al.  Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites , 1986, Journal of clinical microbiology.

[142]  P. Sokol Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia , 1986, Journal of clinical microbiology.

[143]  T. Montie,et al.  Avirulence and altered physiological properties of cystic fibrosis strains of Pseudomonas aeruginosa , 1985, Infection and immunity.

[144]  P. Mazodier,et al.  Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes , 1985, Nucleic Acids Res..

[145]  D. Vapnek,et al.  Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. , 1985, Plasmid.

[146]  P. Klemm The fimA gene encoding the type-1 fimbrial subunit of Escherichia coli. Nucleotide sequence and primary structure of the protein. , 1984, European journal of biochemistry.

[147]  M. Corey,et al.  Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. , 1984, The Journal of pediatrics.

[148]  T. Lessie,et al.  Response of Pseudomonas cepacia to beta-Lactam antibiotics: utilization of penicillin G as the carbon source , 1979, Journal of bacteriology.

[149]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.