Complex networks from classical to quantum

Recent progress in applying complex network theory to problems in quantum information has resulted in a beneficial cross-over. Complex network methods have successfully been applied to transport and entanglement models while information physics is setting the stage for a theory of complex systems with quantum information-inspired methods. Novel quantum induced effects have been predicted in random graphs—where edges represent entangled links—and quantum computer algorithms have been proposed to offer enhancement for several network problems. Here we review the results at the cutting edge, pinpointing the similarities and the differences found at the intersection of these two fields.Quantum communication and computing is now in a data-intensive domain where a classical network describing a quantum system seems no longer sufficient to yield a generalization of complex networks methods to the quantum domain. The authors review recent progress into this paradigm shift that drives the creation of a network theory based fundamentally on quantum effects.

[1]  S. Lloyd,et al.  Chiral quantum walks , 2014, 1405.6209.

[2]  J. Biamonte,et al.  A Course on Quantum Techniques for Stochastic Mechanics , 2012 .

[3]  Z. Kurucz,et al.  Quantized recurrence time in unital iterated open quantum dynamics , 2014, 1411.0568.

[4]  Dimitris I. Tsomokos,et al.  Quantum walks on complex networks with connection instabilities and community structure , 2010, 1012.2405.

[5]  Marcel Blattner,et al.  Continuous-time quantum walks on directed bipartite graphs , 2016 .

[6]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[7]  Seth Lloyd,et al.  Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.

[8]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[9]  A. Arenas,et al.  Mathematical Formulation of Multilayer Networks , 2013, 1307.4977.

[10]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[11]  Carlo Rovelli,et al.  Geometry of loop quantum gravity on a graph , 2010, 1005.2927.

[12]  Diego Garlaschelli,et al.  Generalized Bose-Fermi statistics and structural correlations in weighted networks. , 2008, Physical review letters.

[13]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[14]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[15]  Harry Eugene Stanley,et al.  Catastrophic cascade of failures in interdependent networks , 2009, Nature.

[16]  A. Barabasi,et al.  Universal resilience patterns in complex networks , 2016, Nature.

[17]  Johan A. K. Suykens,et al.  Magnetic eigenmaps for community detection in directed networks , 2016, Physical review. E.

[18]  R. Pastor-Satorras,et al.  Class of correlated random networks with hidden variables. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Adilson E Motter Cascade control and defense in complex networks. , 2004, Physical review letters.

[20]  T. Wilk,et al.  Single-Atom Single-Photon Quantum Interface , 2007, Science.

[21]  Vito Latora,et al.  Structural reducibility of multilayer networks , 2015, Nature Communications.

[22]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[23]  Stefan Bornholdt,et al.  Detecting fuzzy community structures in complex networks with a Potts model. , 2004, Physical review letters.

[24]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[25]  Christoph Strunk,et al.  Superinsulator and quantum synchronization , 2008, Nature.

[26]  L. Viola,et al.  Convergence rates for arbitrary statistical moments of random quantum circuits. , 2009, Physical review letters.

[27]  M. Newman Communities, modules and large-scale structure in networks , 2011, Nature Physics.

[28]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[29]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[30]  Andris Ambainis,et al.  Spatial Search by Quantum Walk is Optimal for Almost all Graphs. , 2015, Physical review letters.

[31]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[32]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[33]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[34]  Madalena Costa,et al.  Multiscale entropy analysis of complex physiologic time series. , 2002, Physical review letters.

[35]  M. Dolgushev,et al.  Complex quantum networks: From universal breakdown to optimal transport. , 2015, Physical review. E.

[36]  Alex Arenas,et al.  Mapping Multiplex Hubs in Human Functional Brain Networks , 2016, Front. Neurosci..

[37]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[38]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[39]  Giuliano Armano,et al.  Quantum–classical transitions in complex networks , 2012, 1205.1771.

[40]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[41]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[42]  Simone Severini,et al.  Quantum graphity: A model of emergent locality , 2008, 0801.0861.

[43]  G. Bianconi,et al.  Shannon and von Neumann entropy of random networks with heterogeneous expected degree. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[45]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[46]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[47]  G. Bianconi,et al.  Phase transition of light on complex quantum networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[49]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[50]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[51]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[52]  Ville Bergholm,et al.  Community Detection in Quantum Complex Networks , 2013, 1310.6638.

[53]  Peter Wittek,et al.  High-performance dynamic quantum clustering on graphics processors , 2013, J. Comput. Phys..

[54]  H. Stanley,et al.  Networks formed from interdependent networks , 2011, Nature Physics.

[55]  Johan A. K. Suykens,et al.  Magnetic Eigenmaps for Visualization of Directed Networks , 2016, ArXiv.

[56]  David Horn,et al.  Dynamic quantum clustering: a method for visual exploration of structures in data , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[58]  Mason A. Porter,et al.  Author Correction: The physics of spreading processes in multilayer networks , 2016, 1604.02021.

[59]  Marián Boguñá,et al.  Self-similarity of complex networks and hidden metric spaces , 2007, Physical review letters.

[60]  Igor L. Markov,et al.  Limits on fundamental limits to computation , 2014, Nature.

[61]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[62]  Silvano Garnerone,et al.  Thermodynamic formalism for dissipative quantum walks , 2012, 1205.5744.

[63]  Oliver Hennigh,et al.  Universal State Transfer on Graphs , 2013, 1310.3885.

[64]  Daniel A. Lidar,et al.  Adiabatic quantum algorithm for search engine ranking. , 2011, Physical review letters.

[65]  Sabre Kais,et al.  Degree distribution in quantum walks on complex networks , 2013, 1305.6078.

[66]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[67]  E. Hancock,et al.  Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  Thomas G. Wong,et al.  Irreconcilable difference between quantum walks and adiabatic quantum computing , 2016, 1603.05423.

[69]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[70]  Ginestra Bianconi,et al.  Statistical mechanics of random geometric graphs: Geometry-induced first-order phase transition. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[72]  Ginestra Bianconi,et al.  Dense Power-law Networks and Simplicial Complexes , 2018, Physical review. E.

[73]  Jesús Gómez-Gardeñes,et al.  Quantum Navigation and Ranking in Complex Networks , 2012, Scientific Reports.

[74]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[75]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[76]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[77]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[78]  A. Cardillo,et al.  Information sharing in quantum complex networks , 2012, 1211.2580.

[79]  James D. Whitfield,et al.  Quantum Stochastic Walks: A Generalization of Classical Random Walks and Quantum Walks , 2009, 0905.2942.

[80]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[81]  Fabio Sciarrino,et al.  Experimental non-locality in a quantum network , 2017 .

[82]  A. Arenas,et al.  Abrupt transition in the structural formation of interconnected networks , 2013, Nature Physics.

[83]  Shlomo Havlin,et al.  Origins of fractality in the growth of complex networks , 2005, cond-mat/0507216.

[84]  Manlio De Domenico,et al.  Spectral entropies as information-theoretic tools for complex network comparison , 2016, 1609.01214.

[85]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[86]  C. H. Bennett,et al.  Quantum Information and Computation , 1995 .

[87]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[88]  Mark E. J. Newman,et al.  Generalized communities in networks , 2015, Physical review letters.

[89]  Mason A. Porter,et al.  Random walks and diffusion on networks , 2016, ArXiv.

[90]  Ginestra Bianconi,et al.  Complex network view of evolving manifolds. , 2017, Physical review. E.

[91]  Edward T. Bullmore,et al.  The Multilayer Connectome of Caenorhabditis elegans , 2016, PLoS Comput. Biol..

[92]  D. Manzano,et al.  Symmetry and the thermodynamics of currents in open quantum systems , 2013, 1310.7370.

[93]  Leonardo Novo,et al.  Optimal Quantum Spatial Search on Random Temporal Networks. , 2017, Physical review letters.

[94]  Miguel-Angel Martin-Delgado,et al.  Google in a Quantum Network , 2011, Scientific Reports.

[95]  M. A. Martin-Delgado,et al.  Quantum Google algorithm , 2014 .

[96]  Panos M. Pardalos,et al.  Quantification of network structural dissimilarities , 2017, Nature Communications.

[97]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[98]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[99]  Marián Boguñá,et al.  Popularity versus similarity in growing networks , 2011, Nature.

[100]  S. Severini,et al.  The Laplacian of a Graph as a Density Matrix: A Basic Combinatorial Approach to Separability of Mixed States , 2004, quant-ph/0406165.

[101]  Ginestra Bianconi,et al.  Emergent Hyperbolic Network Geometry , 2016, Scientific Reports.

[102]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[103]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[104]  Alessandro Vespignani Modelling dynamical processes in complex socio-technical systems , 2011, Nature Physics.

[105]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[106]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[107]  Martí Cuquet,et al.  Entanglement percolation in quantum complex networks. , 2009, Physical review letters.

[108]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  P. Schloss,et al.  Dynamics and associations of microbial community types across the human body , 2014, Nature.

[110]  Marián Boguñá,et al.  Navigability of Complex Networks , 2007, ArXiv.

[111]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[112]  Z. Burda,et al.  Localization of the maximal entropy random walk. , 2008, Physical review letters.

[113]  Ginestra Bianconi,et al.  Emergent Complex Network Geometry , 2014, Scientific Reports.

[114]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[115]  Nicolas Treps,et al.  Reconfigurable optical implementation of quantum complex networks , 2017, 1708.08726.

[116]  Albert Solé-Ribalta,et al.  Navigability of interconnected networks under random failures , 2013, Proceedings of the National Academy of Sciences.

[117]  G. Bianconi,et al.  Complex quantum network geometries: Evolution and phase transitions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[118]  James D. Whitfield,et al.  Quantum Transport Enhancement by Time-Reversal Symmetry Breaking , 2012, Scientific Reports.

[119]  S. Carpenter,et al.  Anticipating Critical Transitions , 2012, Science.

[120]  David Horn,et al.  Clustering via Hilbert space , 2001 .

[121]  Ginestra Bianconi,et al.  Network geometry with flavor: From complexity to quantum geometry. , 2015, Physical review. E.

[122]  Emilio Hernández-García,et al.  Synchronization, quantum correlations and entanglement in oscillator networks , 2013, Scientific Reports.

[123]  Ginestra Bianconi,et al.  Interdisciplinary and physics challenges of network theory , 2015, 1509.00345.

[124]  T. H. Johnson,et al.  What is a quantum simulator? , 2014, EPJ Quantum Technology.

[125]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[126]  R. Chaves,et al.  Experimental violation of local causality in a quantum network , 2016, Nature Communications.

[127]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.