Chaotic time series

Certain deterministic non-linear systems may show chaotic behaviour. Time series derived from such systems seem stochastic when analyzed with linear techniques. However, uncovering the deterministic structure is important because it allows constructing more realistic and better models and thus improved predictive capabilities. This paper provides a review of two main key features of chaotic systems, the dimensions of their strange attractors and the Lyapunov exponents. The emphasis is on state space reconstruction techniques that are used to estimate these properties, given scalar observations. Data generated from equations known to display chaotic behaviour are used for illustration. A compilation of applications to real data from widely di erent elds is given. If chaos is found to be present, one may proceed to build non-linear models, which is the topic of the second paper in this series.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[3]  S. M. Ulam,et al.  On Combination of Stochastic and Deterministic Processes , 1947 .

[4]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[5]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[6]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[7]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[8]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[9]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[10]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[11]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[12]  E. Ott,et al.  Dimension of Strange Attractors , 1980 .

[13]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[14]  N. MacDonald Nonlinear dynamics , 1980, Nature.

[15]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[16]  F. Takens Detecting strange attractors in turbulence , 1981 .

[17]  J. D. Farmer,et al.  Chaotic attractors of an infinite-dimensional dynamical system , 1982 .

[18]  John Guckenheimer,et al.  Noise in chaotic systems , 1982 .

[19]  A. Wolf,et al.  Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors , 1982 .

[20]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[21]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[22]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[23]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[24]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[25]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[26]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[27]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[28]  G. Nicolis,et al.  Is there a climatic attractor? , 1984, Nature.

[29]  H. Schuster Deterministic chaos: An introduction , 1984 .

[30]  R. Jensen,et al.  Chaotic price behavior in a non-linear cobweb model , 1984 .

[31]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[32]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[33]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[34]  P. Grassberger Do climatic attractors exist? , 1986, Nature.

[35]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[36]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Leonard A. Smith,et al.  Lacunarity and intermittency in fluid turbulence , 1986 .

[38]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[39]  Joachim Holzfuss,et al.  Approach to error-estimation in the application of dimension algorithms , 1986 .

[40]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[41]  Biman Das,et al.  Calculating the dimension of attractors from small data sets , 1986 .

[42]  Swinney,et al.  Strange attractors in weakly turbulent Couette-Taylor flow. , 1987, Physical review. A, General physics.

[43]  R. Cawley,et al.  Maximum likelihood method for evaluating correlation dimension , 1987 .

[44]  Theiler,et al.  Efficient algorithm for estimating the correlation dimension from a set of discrete points. , 1987, Physical review. A, General physics.

[45]  R. Ecke,et al.  Mode-locking and chaos in Rayleigh—Benard convection , 1987 .

[46]  Christopher Essex,et al.  The climate attractor over short timescales , 1987, Nature.

[47]  K. Briggs Simple experiments in chaotic dynamics , 1987 .

[48]  G. P. King,et al.  Topological dimension and local coordinates from time series data , 1987 .

[49]  Agnessa Babloyantz,et al.  A comparative study of the experimental quantification of deterministic chaos , 1988 .

[50]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[51]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[52]  Yorke,et al.  Noise reduction in dynamical systems. , 1988, Physical review. A, General physics.

[53]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[54]  Lange,et al.  Measuring filtered chaotic signals. , 1988, Physical review. A, General physics.

[55]  G. Broggi,et al.  Measurement of the dimension spectrum ƒ(α): Fixed-mass approach , 1988 .

[56]  R. Fildes Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .

[57]  L. Liebovitch,et al.  A fast algorithm to determine fractal dimensions by box counting , 1989 .

[58]  Mark Kot,et al.  Multidimensional trees, range searching, and a correlation dimension algorithm of reduced complexity , 1989 .

[59]  A. Fraser Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria , 1989 .

[60]  Franaszek Optimized algorithm for the calculation of correlation integrals. , 1989, Physical review. A, General physics.

[61]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[62]  R. Vautard,et al.  Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series , 1989 .

[63]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[64]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[65]  Stephen M. Hammel,et al.  A noise reduction method for chaotic systems , 1990 .

[66]  James B. Ramsey,et al.  The statistical properties of dimension calculations using small data sets , 1990 .

[67]  Theiler Statistical precision of dimension estimators. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[68]  Christopher Essex,et al.  Chaotic time series analyses of epileptic seizures , 1990 .

[69]  Jan Klaschka,et al.  Modification of the Grassberger-Procaccia algorithm for estimating the correlation exponent of chaotic systems with high embedding dimension , 1990 .

[70]  James A. Yorke,et al.  Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data , 1989 .

[71]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[72]  K. Briggs An improved method for estimating Liapunov exponents of chaotic time series , 1990 .

[73]  H. Abarbanel,et al.  Lyapunov exponents from observed time series. , 1990, Physical review letters.

[74]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[75]  C. Essex,et al.  Correlation dimension and systematic geometric effects. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[76]  P. Grassberger An optimized box-assisted algorithm for fractal dimensions , 1990 .

[77]  T. Shinbrot,et al.  A chaotic attractor in timing noise from the Vela pulsar , 1990 .

[78]  A. Gallant,et al.  Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data , 1991 .

[79]  Michael Ghil,et al.  Nonlinear Dynamics and Predictability in the Atmospheric Sciences , 1991 .

[80]  J. D. Farmer,et al.  Optimal shadowing and noise reduction , 1991 .

[81]  K. Pawelzik,et al.  Optimal Embeddings of Chaotic Attractors from Topological Considerations , 1991 .

[82]  H. Abarbanel,et al.  LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS: THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA , 1991 .

[83]  J. Theiler Some Comments on the Correlation Dimension of 1/fαNoise , 1991 .

[84]  B. LeBaron,et al.  Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence , 1991 .

[85]  A. Wolf,et al.  Diagnosing chaos in the space circle , 1991 .

[86]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[87]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[88]  T A Denton,et al.  Can the analytic techniques of nonlinear dynamics distinguish periodic, random and chaotic signals? , 1991, Computers in biology and medicine.

[89]  M. Casdagli Chaos and Deterministic Versus Stochastic Non‐Linear Modelling , 1992 .

[90]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[91]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[92]  A. Gallant,et al.  Estimating the Lyapunov Exponent of a Chaotic System with Nonparametric Regression , 1992 .

[93]  B. M. Fulk MATH , 1992 .

[94]  D. T. Kaplan,et al.  Direct test for determinism in a time series. , 1992, Physical review letters.

[95]  W. Ditto,et al.  Chaos: From Theory to Applications , 1992 .

[96]  Leonard A. Smith,et al.  Distinguishing between low-dimensional dynamics and randomness in measured time series , 1992 .

[97]  R. Smith,et al.  Estimating Dimension in Noisy Chaotic Time Series , 1992 .

[98]  D. Ruelle,et al.  Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .

[99]  Robert C. Hilborn,et al.  Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers , 1993 .

[100]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[101]  Henry D. I. Abarbanel Nonlinearity and chaos at work , 1993, Nature.

[102]  Entropy and Lyapunov exponents of random diffeomorphisms , 1995 .

[103]  György Barna,et al.  Lyapunov exponents from time series: Variations for an algorithm , 1995, Int. J. Intell. Syst..

[104]  October I Physical Review Letters , 2022 .