Strong environmental coupling in a Josephson parametric amplifier

We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.

[1]  Kumar,et al.  Squeezed-light generation with an incoherent pump. , 1990, Physical review letters.

[2]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[3]  R. F. Bradley,et al.  Cryogenic, low-noise, balanced amplifiers for the 300–1200 MHz band using heterostructure field-effect transistors , 1999 .

[4]  A. Wallraff,et al.  Controlling the dynamic range of a Josephson parametric amplifier , 2013, 1305.6583.

[5]  Srihari Keshavamurthy,et al.  Annual Review of Physical Chemistry, 2015 , 2016 .

[6]  D. Pozar Microwave Engineering , 1990 .

[7]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[8]  Yasunobu Nakamura,et al.  Flux-driven Josephson parametric amplifier , 2008, 0808.1386.

[9]  R. Barends,et al.  Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line , 2013, 1308.1376.

[10]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[11]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .

[12]  Z. Popovic,et al.  A 4 : 1 Transmission-Line Impedance Transformer for Broadband Superconducting Circuits , 2012, IEEE Transactions on Applied Superconductivity.

[13]  USA,et al.  Microwave bifurcation of a Josephson junction: Embedding-circuit requirements , 2007 .

[14]  L Frunzio,et al.  An RF-Driven Josephson Bifurcation Amplifier for Quantum Measurements , 2003, cond-mat/0312623.

[15]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[16]  R. J. Schoelkopf,et al.  Quantum Back-Action of an Individual Variable-Strength Measurement , 2013, Science.

[17]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[18]  D B Tanner,et al.  SQUID-based microwave cavity search for dark-matter axions. , 2009, Physical review letters.

[19]  Chad Rigetti,et al.  Josephson amplifier for qubit readout , 2011, 1103.1405.

[20]  R. Klopfenstein A Transmission Line Taper of Improved Design , 1956, Proceedings of the IRE.

[21]  Rupp,et al.  Observation of parametric amplification and deamplification in a Josephson parametric amplifier. , 1989, Physical review. A, General physics.

[22]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[23]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[24]  P. Delsing,et al.  Negative-resistance models for parametrically flux-pumped superconducting quantum interference devices , 2013, 1311.2063.

[25]  L Frunzio,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[26]  J. Clarke,et al.  Dispersive magnetometry with a quantum limited SQUID parametric amplifier , 2010, 1003.2466.