Mixed algebras and their logics

Abstract We investigate complex algebras of the form arising from a frame where , and exhibit their abstract algebraic and logical counterparts.

[1]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[2]  Johan van Benthem,et al.  Canonical Modal Logics and Ultrafilter Extensions , 1979, J. Symb. Log..

[3]  Sabine Koppelberg,et al.  Handbook of Boolean Algebras , 1989 .

[4]  Wolfgang Rautenberg,et al.  Splitting lattices of logics , 1980, Arch. Math. Log..

[5]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[6]  Dimiter Vakarelov,et al.  Modal Logics for Knowledge Representation Systems , 1989, Theor. Comput. Sci..

[7]  Jorge Lobo,et al.  Modal logics for knowledge representation systems , 1991 .

[8]  Ivo Düntsch,et al.  Beyond modalities: sufficiency and mixed algebras , 2001 .

[9]  Lloyd Humberstone Inaccessible worlds , 1983, Notre Dame J. Formal Log..

[10]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[11]  R. Labrecque The Correspondence Theory , 1978 .

[12]  Giovanni Sambin,et al.  Topology and duality in modal logic , 1988, Ann. Pure Appl. Log..

[13]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[14]  Ivo Düntsch,et al.  Boolean algebras arising from information systems , 2004, Ann. Pure Appl. Log..

[15]  R. Goldblatt Mathematics of modality , 1993 .

[16]  Tinko Tinchev,et al.  Modal Environment for Boolean Speculations , 1987 .

[17]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[18]  R. Goldblatt Elementary generation and canonicity for varieties of Boolean algebras with operators , 1995 .

[19]  Robert Goldblatt,et al.  Semantic analysis of orthologic , 1974, J. Philos. Log..