First-order observation-driven integer-valued autoregressive processes

A first-order observation-driven integer-valued autoregressive model is introduced. Ergodicity of the process is established. Conditional least squares and maximum likelihood estimators of the model parameters are derived. The performances of these estimators are compared via simulation. The models are applied to a real data set.

[1]  R. Tweedie Sufficient conditions for regularity, recurrence and ergodicity of Markov processes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  R. Tweedie Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space , 1975 .

[3]  I. Basawa,et al.  Estimation for a class of generalized state-space time series models , 2002 .

[4]  S. Zeger,et al.  Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.

[5]  Paul I. Nelson,et al.  On Conditional Least Squares Estimation for Stochastic Processes , 1978 .

[6]  Subir Ghosh Asymptotics, Nonparametrics, and Time Series , 2000 .

[7]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[8]  Somnath Datta,et al.  First-order random coefficient integer-valued autoregressive processes , 2007 .

[9]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[10]  Mohamed Alosh,et al.  First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .

[11]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[12]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[13]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[14]  Peter Guttorp,et al.  Statistical inference for branching processes , 1991 .

[15]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[16]  Somnath Datta,et al.  Inference for pth‐order random coefficient integer‐valued autoregressive processes , 2006 .