First-order observation-driven integer-valued autoregressive processes
暂无分享,去创建一个
[1] R. Tweedie. Sufficient conditions for regularity, recurrence and ergodicity of Markov processes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] R. Tweedie. Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space , 1975 .
[3] I. Basawa,et al. Estimation for a class of generalized state-space time series models , 2002 .
[4] S. Zeger,et al. Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.
[5] Paul I. Nelson,et al. On Conditional Least Squares Estimation for Stochastic Processes , 1978 .
[6] Subir Ghosh. Asymptotics, Nonparametrics, and Time Series , 2000 .
[7] Lain L. MacDonald,et al. Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .
[8] Somnath Datta,et al. First-order random coefficient integer-valued autoregressive processes , 2007 .
[9] Mohamed Alosh,et al. FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .
[10] Mohamed Alosh,et al. First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .
[11] Fw Fred Steutel,et al. Discrete analogues of self-decomposability and stability , 1979 .
[12] Ed. McKenzie,et al. SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .
[13] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[14] Peter Guttorp,et al. Statistical inference for branching processes , 1991 .
[15] Patrick Billingsley,et al. Statistical inference for Markov processes , 1961 .
[16] Somnath Datta,et al. Inference for pth‐order random coefficient integer‐valued autoregressive processes , 2006 .