Symbolic Model Checking withRich

The paper shows that, by an appropriate choice of a rich assertional language, it is possible to extend the utility of symbolic model checking beyond the realm of bdd-represented nite-state systems into the domain of innnite-state systems, leading to a powerful technique for uniform veriication of unbounded (parameterized) process networks. The main contributions of the paper are a formulation of a general framework for symbolic model checking of innnite-state systems, a demonstration that many individual examples of uniformly veriied parameterized designs that appear in the literature are special cases of our general approach, verifying the correctness of the Futurebus+ design for all single-bus conngurations, and extending the technique to tree architectures.

[1]  Orna Grumberg,et al.  Branching Time Temporal Logic and Amorphous Tree Automata , 1993, CONCUR.

[2]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[3]  Amir Pnueli,et al.  A Platform for Combining Deductive with Algorithmic Verification , 1996, CAV.

[4]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[5]  Kedar S. Namjoshi,et al.  Reasoning about rings , 1995, POPL '95.

[6]  Robert P. Kurshan,et al.  A structural induction theorem for processes , 1989, PODC.

[7]  Somesh Jha,et al.  Verification of the Futurebus+ cache coherence protocol , 1993, Formal Methods Syst. Des..

[8]  E. Clarke,et al.  Automatic Veriication of Nite-state Concurrent Systems Using Temporal-logic Speciications. Acm , 1993 .

[9]  A. Prasad Sistla,et al.  Reasoning about systems with many processes , 1992, JACM.

[10]  Andrea Szalavetz,et al.  Hungarian Academy of Sciences , 1952, Nature.

[11]  Joseph Sifakis,et al.  Specification and verification of concurrent systems in CESAR , 1982, Symposium on Programming.

[12]  Somesh Jha,et al.  Veryfying Parameterized Networks using Abstraction and Regular Languages , 1995, CONCUR.

[13]  Pierre Wolper,et al.  Verifying Properties of Large Sets of Processes with Network Invariants , 1990, Automatic Verification Methods for Finite State Systems.

[14]  Nicolas Halbwachs,et al.  Automatic verification of parameterized linear networks of processes , 1997, POPL '97.

[15]  Javier Esparza,et al.  Reachability Analysis of Pushdown Automata: Application to Model-Checking , 1997, CONCUR.

[16]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[17]  Nicolas Halbwachs,et al.  An experience in proving regular networks of processes by modular model checking , 1992, Acta Informatica.

[18]  K. Namjoshi Automatic Veriication of Parameterized Synchronous Systems ? (extended Abstract) , 1996 .

[19]  Friedrich Otto,et al.  String-Rewriting Systems , 1993, Text and Monographs in Computer Science.

[20]  Nils Klarlund,et al.  Mona: Monadic Second-Order Logic in Practice , 1995, TACAS.

[21]  David L. Dill,et al.  Verifying Systems with Replicated Components in Murϕ , 1999, Formal Methods Syst. Des..

[22]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[23]  John Doner,et al.  Tree Acceptors and Some of Their Applications , 1970, J. Comput. Syst. Sci..

[24]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.