Linking two distinct layered networks of nanosized {Ln18} and {Cu24} wheels through isonicotinate ligands.

A new series of heterolanthanide(III)-copper(I) wheel-cluster complexes [Ln6(micro3-O)2](IN)18-[Cu8(micro4-I)2(micro2-I)3].H3O (IN=isonicotinate; Ln=Y 1, Nd 2, Dy 3, Gd 4, Sm 5, Eu 6, Tb 7) were prepared by hydrothermal reaction at low pH. X-ray crystallographic studies reveal that two unusual trinuclear [Ln3(micro3-O)] and tetranuclear [Cu4(micro4-I)] cores are successfully used as secondary building units to make two different nanosized wheels [Ln18(micro3-O)6(CO2)48](6-), {Ln18}, and [Cu24(micro4-I)6(micro2-I)12]6+, {Cu24}, with 12-rings and a diameter of 26.7 and 26.4 A, respectively. The wheels are further assembled into two-dimensional (2D) {Ln18} and {Cu24} networks, the linkages between two distinct layered networks of {Ln18} and {Cu24} wheels by IN pillars along the c axis giving a series of unprecedented three-dimensional (3D) sandwich frameworks. To our knowledge, compounds 1-7 are the first examples containing two different layered networks of nanosized Ln and transition metal (TM) wheels in wheel-cluster chemistry. The IR, UV/Vis, thermogravimetric analysis (TGA), luminescent, and magnetic properties of these complexes were also studied.

[1]  Samar K. Das,et al.  Assembling nanosized ring-shaped synthons to an anionic layer structure based on the synergetically induced functional complementarity of their surface-sites: Na21[MoVI126MoV28O462H14(H2O)54(H2PO2)7]·xH2O (x ≈ 300) , 1999 .

[2]  Song Gao,et al.  Structures and magnetism of cyano-bridged grid-like two-dimensional 4f–3d arrays , 2006 .

[3]  Zhiping Zheng,et al.  Coordination Chemistry of Lanthanides at "High" pH: Synthesis and Structure of the Pentadecanuclear Complex of Europium(III) with Tyrosine. , 1999, Angewandte Chemie.

[4]  L. Berger,et al.  Low‐Temperature Magnetization of Cu(NO3)2·2.5H2O , 1969 .

[5]  W. Wernsdorfer,et al.  Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnet. , 2004, Inorganic chemistry.

[6]  P. T. Wolczanski,et al.  Ferrous wheels, ellipse [(tBu3SiS)FeX]n, and cube [(tBu3SiS)Fe(CCSitBu3)]4. , 2003, Angewandte Chemie.

[7]  C. Raptopoulou,et al.  [[Fe(OMe)2[O2CC(OH)Ph2]]12]: synthesis and characterization of a new member in the family of molecular ferric wheels with the carboxylatobis(alkoxo) bridging unit. , 2002, Angewandte Chemie.

[8]  P. Cheng,et al.  Synthesis and Magnetic Properties of New Trinuclear Lanthanide (III) Complexes Bridged by Terephthalato Groups , 1996 .

[9]  S. Alvarez,et al.  A family of ferro- and antiferromagnetically coupled decametallic chromium(III) wheels. , 2006, Chemistry.

[10]  S. Teat,et al.  Templating open- and closed-chain structures around metal complexes of macrocycles. , 2004, Angewandte Chemie.

[11]  Tasuku Ito,et al.  Octalanthanide wheels supported by p-tert-butylsulfonylcalix[4]arene. , 2004, Angewandte Chemie.

[12]  J. Marrot,et al.  MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and mu3-oxo-centered trinuclear units. , 2006, Journal of the American Chemical Society.

[13]  J. Overgaard,et al.  Horseshoes, rings, and distorted rings: studies of cyclic chromium-fluoride cages. , 2003, Angewandte Chemie.

[14]  Zeng-Xin Li,et al.  Poly[tetraaqua-μ3-benzene-1,2-dicarboxylato-μ3-bromido-penta-μ2-bromido-octa-μ3-isonicotinato-heptacopper(I)trilanthanum(III)] , 2009, Acta crystallographica. Section E, Structure reports online.

[15]  Jie‐Peng Zhang,et al.  A new route to supramolecular isomers via molecular templating: nanosized molecular polygons of copper(I) 2-methylimidazolates. , 2004, Journal of the American Chemical Society.

[16]  A. Müller,et al.  Soluble molybdenum blues-"des Pudels Kern". , 2000, Accounts of chemical research.

[17]  W. Wernsdorfer,et al.  DFT computational rationalization of an unusual spin ground state in an Mn12 single-molecule magnet with a low-symmetry loop structure. , 2005, Angewandte Chemie.

[18]  U. Kortz,et al.  Das radförmige Cu20‐Wolframatophosphat [Cu20Cl(OH)24(H2O)12(P8W48O184)]25− , 2005 .

[19]  T. Lobana,et al.  Synthesis of an unprecedented bicapped adamantoid [Cu6(mu2-I)(mu3-I)4(mu4-I)(m-tolyl3P)4(CH3CN)2] cluster. , 2004, Inorganic chemistry.

[20]  L. Cronin,et al.  Towards polyoxometalate-integrated nanosystems. , 2006, Chemistry.

[21]  J. Overgaard,et al.  A family of heterometallic wheels containing potentially fourteen hundred siblings. , 2005, Chemical communications.

[22]  Andrea Cornia,et al.  Ein cyclischer Octadecaeisen(III)‐Komplex: ein molekulares Achtzehner‐Rad , 1997 .

[23]  J. Trombe,et al.  Structure and spectroscopic and magnetic properties of rare earth metal(III) derivatives with the 2-formyl-4-methyl-6-(N-(2-pyridylethyl)formimidoyl)phenol ligand , 1993 .

[24]  P. Santini,et al.  Molecular routes for spin cluster qubits. , 2006, Dalton transactions.

[25]  R. Anwander "Self-Assembly" in Organolanthanide Chemistry: Formation of Rings and Clusters. , 1998, Angewandte Chemie.

[26]  J. Overgaard,et al.  Synthesis and characterization of heterometallic {Cr7M} wheels. , 2003, Angewandte Chemie.

[27]  A. Caneschi,et al.  Self assembly, structure and properties of the decanuclear lanthanide ring complex, Dy10(OC2H4OCH3)30. , 2003, Chemical communications.

[28]  Guo-Yu Yang,et al.  A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands. , 2005, Angewandte Chemie.

[29]  S. Carretta,et al.  A ring cycle: studies of heterometallic wheels. , 2007, Chemical communications.

[30]  James Raftery,et al.  Solvothermal syntheses of high-nuclearity vanadium(III) clusters. , 2003, Chemistry.

[31]  M. Yamashita,et al.  A dodecalanthanide wheel supported by p-tert-butylsulfonylcalix[4]arene. , 2006, Chemistry, an Asian journal.

[32]  U. Kortz,et al.  The wheel-shaped Cu20 tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- ion. , 2005, Angewandte Chemie.

[33]  R. Anwander VON RINGEN UND CLUSTERN: SELBSTORGANISATION IN DER ORGANOLANTHANOIDCHEMIE , 1998 .

[34]  Andrea Caneschi,et al.  A Cyclic Octadecairon(III) Complex, the Molecular 18‐Wheeler , 1997 .

[35]  R. Raptis,et al.  Anion encapsulation by neutral supramolecular assemblies of cyclic CuII complexes: a series of five polymerization isomers, [(cis-CuII(mu-OH)(mu-pz))n], n=6, 8, 9, 12, and 14. , 2004, Angewandte Chemie.

[36]  J. Overgaard,et al.  The magnetic möbius strip: synthesis, structure, and magnetic studies of odd-numbered antiferromagnetically coupled wheels. , 2004, Angewandte Chemie.

[37]  Yadong Li,et al.  [MnIII(salen)]6[FeIII(bpmb)(CN)2]67 H2O: a cyanide-bridged nanosized molecular wheel. , 2005, Angewandte Chemie.

[38]  Yuan Yao,et al.  A simultaneous redox, alkylation, self-assembly reaction under solvothermal conditions afforded a luminescent copper(I) chain polymer constructed of Cu3I4- and EtS-4-C5H4N+Et components (Et = CH3CH2). , 2004, Journal of the American Chemical Society.

[39]  Grigore A. Timco,et al.  Studies of chromium cages and wheels , 2005 .

[40]  S. Peng,et al.  Formation and Stabilization of a Decanuclear CuII Wheel Linked by Chloride and O⋅⋅⋅H−N Hydrogen Bonds , 2001 .

[41]  Samar K. Das,et al.  Giant Ring-Shaped Building Blocks Linked to Form a Layered Cluster Network with Nanosized Channels: [Mo124VIMo28VO429(μ3-O)28H14(H2O)66.5]16− , 1999 .

[42]  M. Olmstead,et al.  Cation-controlled self-assembly of a hexameric europium wheel. , 2002, Journal of the American Chemical Society.

[43]  K. Kambe On the Paramagnetic Susceptibilities of Some Polynuclear Complex Salts , 1950 .

[44]  S. Lippard,et al.  [Fe(OMe)2(O2CCH2Cl)]10, a Molecular Ferric Wheel , 1994 .

[45]  J. Costes,et al.  Unequivocal synthetic pathway to heterodinuclear (4f,4f') complexes: magnetic study of relevant (Ln(III), Gd(III)) and (Gd(III), Ln(III)) complexes. , 2002, Chemistry.

[46]  E. Cadot,et al.  Cyclic molecular materials based on [M2O2S2]2+ cores (M = Mo or W). , 2002, Chemical communications.

[47]  A. Caneschi,et al.  Synthetic and magnetic studies of a dodecanuclear cobalt wheel. , 2002, Chemical communications.

[48]  W. Wernsdorfer,et al.  Linking rings through diamines and clusters: exploring synthetic methods for making magnetic quantum gates. , 2005, Angewandte Chemie.

[49]  Jie-Sheng Chen,et al.  Structures, photoluminescence, up-conversion, and magnetism of 2D and 3D rare-earth coordination polymers with multicarboxylate linkages. , 2006, Inorganic chemistry.

[50]  Jihong Yu,et al.  Insight into the construction of open-framework aluminophosphates. , 2006, Chemical Society reviews.

[51]  Ruiyao Wang,et al.  KOORDINATIONSCHEMIE VON LANTHANOIDEN BEI HOHEN PH-WERTEN : SYNTHESE UND STRUKTUR EINES FUNFZEHNKERNIGEN TYROSIN/EUROPIUM(III)-KOMPLEXES , 1999 .

[52]  L. Cronin,et al.  A high-nuclearity "Celtic-ring" isopolyoxotungstate, [H12W36O120]12-, that captures trace potassium ions. , 2004, Journal of the American Chemical Society.

[53]  S. Koshihara,et al.  Static magnetic-field-induced phase lag in the magnetization response of tris(dipicolinato)lanthanides. , 2006, Inorganic chemistry.

[54]  T. Aida,et al.  A molybdenum crown cluster forms discrete inorganic-organic nanocomposites with metalloporphyrins. , 2004, Angewandte Chemie.

[55]  L. Hubert-Pfalzgraf,et al.  Alkoxides with polydentate alcohols: synthesis and structure of [Y(OC2H4OMe)3]10, a hydrocarbon soluble cyclic decamer , 1989 .

[56]  R. Winpenny,et al.  Synthesis, Structure, and Preliminary Magnetic Studies of a Ni24 Wheel. , 2001, Angewandte Chemie.

[57]  Gang Su,et al.  Cyano-Bridged 4f-3d Coordination Polymers with a Unique Two-Dimensional Topological Architecture and Unusual Magnetic Behavior. , 2001, Angewandte Chemie.

[58]  Guo-Ming Wang,et al.  Poly[tetraaqua-μ4-bromido-di-μ2-bromido-μ2-hydroxido-di-μ3-isonicotinato-tetra-μ2-isonicotinato-tetracopper(I)dithulium(III)] , 2008, Acta crystallographica. Section E, Structure reports online.

[59]  Shoutian Zheng,et al.  Lanthanide-transition-metal sandwich framework comprising {Cu3} cluster pillars and layered networks of {Er36} wheels. , 2005, Angewandte Chemie.

[60]  B. Iversen,et al.  Host-guest chemistry of the chromium-wheel complex [Cr8F8(tBuCO2)16]: prediction of inclusion capabilities by using an electrostatic potential distribution determined by modeling synchrotron X-ray structure factors at 16 K. , 2002, Chemistry.

[61]  Guo-Yu Yang,et al.  Zinc Phosphate with Gigantic Pores of 24 Tetrahedra , 1999 .

[62]  A. J. Blake,et al.  Studies of a nickel-based single-molecule magnet. , 2001, Chemistry.