Filter Design With Secrecy Constraints: The MIMO Gaussian Wiretap Channel

This paper considers the problem of filter design with secrecy constraints, where two legitimate parties (Alice and Bob) communicate in the presence of an eavesdropper (Eve) over a Gaussian multiple-input-multiple-output (MIMO) wiretap channel. This problem involves designing, subject to a power constraint, the transmit and the receive filters which minimize the mean-squared error (MSE) between the legitimate parties whilst assuring that the eavesdropper MSE remains above a certain threshold. We consider a general MIMO Gaussian wiretap scenario, where the legitimate receiver uses a linear zero-forcing (ZF) filter and the eavesdropper receiver uses either a ZF or an optimal linear Wiener filter. We provide a characterization of the optimal filter designs by demonstrating the convexity of the optimization problems. We also provide generalizations of the filter designs from the scenario where the channel state is known to all the parties to the scenario where there is uncertainty in the channel state. A set of numerical results illustrates the performance of the novel filter designs, including the robustness to channel modeling errors. In particular, we assess the efficacy of the designs in guaranteeing not only a certain MSE level at the eavesdropper, but also in limiting the error probability at the eavesdropper. We also assess the impact of the filter designs on the achievable secrecy rates. The penalty induced by the fact that the eavesdropper may use the optimal nonlinear receive filter rather than the optimal linear one is also explored in the paper.

[1]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2007, 2008 IEEE International Symposium on Information Theory.

[2]  Allan Tomlinson,et al.  Conditional access in mobile systems: securing the application , 2005, First International Conference on Distributed Frameworks for Multimedia Applications.

[3]  Kenneth Steiglitz,et al.  Suppression of Near- and Far-End Crosstalk by Linear Pre- and Post-Filtering , 1992, IEEE J. Sel. Areas Commun..

[4]  Shlomo Shamai,et al.  Secure Communication Over Fading Channels , 2007, IEEE Transactions on Information Theory.

[5]  A. Lee Swindlehurst,et al.  Utility of beamforming strategies for secrecy in multiuser MIMO wiretap channels , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[6]  Anna Scaglione,et al.  Redundant filterbank precoders and equalizers. I. Unification and optimal designs , 1999, IEEE Trans. Signal Process..

[7]  Carles Padró,et al.  Information Theoretic Security , 2013, Lecture Notes in Computer Science.

[8]  Björn E. Ottersten,et al.  Joint Bit Allocation and Precoding for MIMO Systems With Decision Feedback Detection , 2009, IEEE Transactions on Signal Processing.

[9]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[10]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[13]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[14]  Shlomo Shamai,et al.  An MMSE Approach to the Secrecy Capacity of the MIMO Gaussian Wiretap Channel , 2009, 2009 IEEE International Symposium on Information Theory.

[15]  A. Lee Swindlehurst,et al.  Robust Beamforming for Security in MIMO Wiretap Channels With Imperfect CSI , 2010, IEEE Transactions on Signal Processing.

[16]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[17]  J. N. Laneman,et al.  Power Allocation in Multi-Antenna Wireless Systems Subject to Simultaneous Power Constraints , 2012, IEEE Transactions on Communications.

[18]  Andrew Thangaraj,et al.  Strong secrecy for erasure wiretap channels , 2010, 2010 IEEE Information Theory Workshop.

[19]  Zhu Han,et al.  Improving Wireless Physical Layer Security via Cooperating Relays , 2010, IEEE Transactions on Signal Processing.

[20]  Matthieu R. Bloch,et al.  Wireless Information-Theoretic Security , 2008, IEEE Transactions on Information Theory.

[21]  Josef A. Nossek,et al.  Linear transmit processing in MIMO communications systems , 2005, IEEE Transactions on Signal Processing.

[22]  John M. Cioffi,et al.  Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization , 2003, IEEE Trans. Signal Process..

[23]  Alfred O. Hero,et al.  Secure space-time communication , 2003, IEEE Trans. Inf. Theory.

[24]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, PIMRC.

[25]  Shlomo Shamai,et al.  An MMSE Approach to the Secrecy Capacity of the MIMO Gaussian Wiretap Channel , 2009 .

[26]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[27]  Miguel R. D. Rodrigues,et al.  MIMO Gaussian Channels With Arbitrary Inputs: Optimal Precoding and Power Allocation , 2010, IEEE Transactions on Information Theory.

[28]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[29]  Hanif D. Sherali,et al.  Optimal power allocation for achieving perfect secrecy capacity in MIMO wire-tap channels , 2009, 2009 43rd Annual Conference on Information Sciences and Systems.

[30]  A. Lee Swindlehurst,et al.  Fixed SINR solutions for the MIMO wiretap channel , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[31]  Richard E. Blahut,et al.  Secrecy capacity of SIMO and slow fading channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[32]  David Gesbert,et al.  Robust linear MIMO receivers: a minimum error-rate approach , 2003, IEEE Trans. Signal Process..

[33]  Jean-Jacques Quisquater,et al.  Cryptology for digital TV broadcasting , 1995, Proc. IEEE.

[34]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[35]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2008, ISIT.

[36]  A. Lee Swindlehurst,et al.  MIMO Interference Channel With Confidential Messages: Achievable Secrecy Rates and Precoder Design , 2011, IEEE Transactions on Information Forensics and Security.

[37]  Athina P. Petropulu,et al.  Optimal input covariance for achieving secrecy capacity in Gaussian MIMO wiretap channels , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[38]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[39]  J. Miller Numerical Analysis , 1966, Nature.

[40]  Narayan Prasad,et al.  MIMO outage capacity in the high SNR regime , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[41]  João M. F. Xavier,et al.  Filter Design with Secrecy Constraints: The Degraded Multiple-Input Multiple-Output Gaussian Wiretap Channel , 2011, 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring).

[42]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Lab. Tech. J..

[43]  Roy D. Yates,et al.  Secrecy capacity of independent parallel channels , 2009 .

[44]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[45]  Nan Liu,et al.  Towards the Secrecy Capacity of the Gaussian MIMO Wire-Tap Channel: The 2-2-1 Channel , 2007, IEEE Transactions on Information Theory.

[46]  Giuseppe Caire,et al.  Optimum power control over fading channels , 1999, IEEE Trans. Inf. Theory.

[47]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[48]  Rohit Negi,et al.  Guaranteeing Secrecy using Artificial Noise , 2008, IEEE Transactions on Wireless Communications.

[49]  A. Noore A secure conditional access system using digital signature and encryption , 2003, 2003 IEEE International Conference on Consumer Electronics, 2003. ICCE..

[50]  Daniel P. Palomar,et al.  A Unified Framework for Communications through MIMO Channels , 2003 .

[51]  Xin Wang,et al.  Masked Beamforming for Multiuser MIMO Wiretap Channels with Imperfect CSI , 2012, IEEE Transactions on Wireless Communications.

[52]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[53]  Hesham El Gamal,et al.  On the Secrecy Capacity of Fading Channels , 2006, 2007 IEEE International Symposium on Information Theory.

[54]  Miguel R. D. Rodrigues,et al.  Filter Design with Secrecy Constraints: The Degraded Parallel Gaussian Wiretap Channel , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[55]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .