Foundations of Computational Mathematics, Budapest 2011: The State of the Art in Smale's 7th Problem

1. Points which maximise the product of their mutual distances (called elliptic Fekete points after [14]). 2. Points which minimise the sum of the inverse of their mutual distances (Thomson’s problem), and more generally which minimise some sum of potentials which depend on the mutual distances (like Riesz potentials). 3. Points which maximise the least distance between any pair. 4. Points which are the center of the optimal packing problem, that is, the problem of finding the smallest radius of a sphere such that one can place on its surface k non–overlapping circles of a given radius.

[1]  Qi Zhong ENERGIES OF ZEROS OF RANDOM SECTIONS ON RIEMANN SURFACES , 2008 .

[2]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[3]  Yanmu Zhou Arrangements of Points on the Sphere , 1995 .

[4]  Johann S. Brauchart,et al.  Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..

[5]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[6]  Enrico Bombieri,et al.  Products of polynomials in many variables , 1990 .

[7]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[8]  Eric Schmutz,et al.  Rational points on the unit sphere , 2008 .

[9]  S. Smale Mathematical problems for the next century , 1998 .

[10]  Peter D Dragnev,et al.  On the Separation of Logarithmic Points on the Sphere , 2002 .

[11]  Paul S. Wang,et al.  Polynomial Factorization Sharp Bounds, Efficient Algorithms , 1993, J. Symb. Comput..

[12]  M. Shub,et al.  Minimizing the discrete logarithmic energy on the sphere: The role of random polynomials , 2011 .

[13]  D. Legg,et al.  Discrete Logarithmic Energy on the Sphere , 2002 .

[14]  János D. Pintér,et al.  Finding elliptic Fekete points sets: two numerical solution approaches , 2001 .

[15]  V. A. Yudin,et al.  Extremal dispositions of points on the sphere , 1997 .

[16]  Artūras Dubickas On the maximal product of distances between points on a sphere , 1996 .

[17]  C. Beltrán Harmonic Properties of the Logarithmic Potential and the Computability of Elliptic Fekete Points , 2013 .

[18]  John Leech,et al.  Equilibrium of Sets of Particles on a Sphere , 1957, The Mathematical Gazette.

[19]  E. RUTHERFORD,et al.  The Structure of the Atom , 1913, Nature.

[20]  Enrique Bendito,et al.  Computational cost of the Fekete problem I: The Forces Method on the 2-sphere , 2009, J. Comput. Phys..

[21]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[22]  Gerold Wagner,et al.  On the product of distances to a point set on a sphere , 1989, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[23]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[24]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[25]  L. L. Whyte Unique Arrangements of Points on a Sphere , 1952 .

[26]  Enrique Bendito Pérez,et al.  Computational cost of the Fekete problem , 2007 .

[27]  Edward B. Saff,et al.  Electrons on the Sphere , 1995 .

[28]  Jean-Baptiste Hiriart-Urruty,et al.  A new series of conjectures and open questions in optimization and matrix analysis , 2009 .

[29]  P. Tammes On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .

[30]  János D. Pintér Globally Optimized Spherical Point Arrangements: Model Variants and Illustrative Results , 2001, Ann. Oper. Res..