Exponentiation of motivic measures

In this short note we establish some properties of all those motivic measures which can be exponentiated. As a first application, we show that the rationality of Kapranov's zeta function is stable under products. As a second application, we give an elementary proof of a result of Totaro.

[1]  V. Voevodsky Triangulated categories of motives over a field , 2015 .

[2]  N. Ramachandran Zeta functions, Grothendieck groups, and the Witt ring , 2014, 1407.1813.

[3]  J. Mazur Rationality of motivic zeta functions for curves with finite abelian group actions , 2011, 1103.2160.

[4]  Gonçalo Tabuada Chow motives versus non-commutative motives , 2011, 1103.0200.

[5]  Qing Liu,et al.  The Grothendieck ring of varieties and piecewise isomorphisms , 2010 .

[6]  M. Bondarko Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura , 2006, Journal of the Institute of Mathematics of Jussieu.

[7]  V. Guletskiĭ Zeta functions in triangulated categories , 2006, math/0605040.

[8]  Franziska Heinloth A note on functional equations for zeta functions with values in Chow motives , 2005, math/0512237.

[9]  Shungen Kimura Chow groups are finite dimensional, in some sense , 2005 .

[10]  C. Mazza Schur functors and motives , 2004, 1010.3932.

[11]  N. Naumann Algebraic independence in the Grothendieck ring of varieties , 2004, math/0403075.

[12]  M. Larsen,et al.  Rationality criteria for motivic zeta functions , 2002, Compositio Mathematica.

[13]  Franziska Bittner The universal Euler characteristic for varieties of characteristic zero , 2001, Compositio Mathematica.

[14]  Y. Andre Motifs de dimension finie , 2004 .

[15]  B. Poonen The Grothendieck ring of varieties is not a domain , 2002, math/0204306.

[16]  L. Goettsche On the Motive of the Hilbert scheme of points on a surface , 2000, math/0007043.

[17]  E. Looijenga Motivic measures , 2000, math/0006220.

[18]  M. Kapranov The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups , 2000, math/0001005.

[19]  Daniela Hahn Correspondences , 1998, Cerebrovascular Diseases.

[20]  S. Zarzuela,et al.  On the Gorenstein property of the diagonals of the Rees algebra. (Dedicated to the memory of Fernando Serrano.) , 1998 .

[21]  S. Rollin,et al.  On the motive of a quotient variety , 1998 .

[22]  C. Soulé,et al.  Descent, motives and K-theory. , 1995, alg-geom/9507013.

[23]  S. Bloch Algebraic K-theory and crystalline cohomology , 1977 .

[24]  Ju. Manin,et al.  CORRESPONDENCES, MOTIFS AND MONOIDAL TRANSFORMATIONS , 1968 .