The inverse, rank and product of tensors
暂无分享,去创建一个
[1] L. Qi. H$^+$-Eigenvalues of Laplacian and Signless Laplacian Tensors , 2013, 1303.2186.
[2] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[3] Kung-Ching Chang,et al. On eigenvalue problems of real symmetric tensors , 2009 .
[4] J. Shao,et al. On some properties of the determinants of tensors , 2013 .
[5] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[6] Chen Ling,et al. On determinants and eigenvalue theory of tensors , 2013, J. Symb. Comput..
[7] Liqun Qi,et al. The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph , 2013, Discret. Appl. Math..
[8] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[9] Jinshan Xie,et al. On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs , 2013 .
[10] L. Qi,et al. M-tensors and nonsingular M-tensors , 2013, 1307.7333.
[11] L. Hogben. Handbook of Linear Algebra , 2006 .
[12] J. Shao. A general product of tensors with applications , 2012, 1212.1535.
[13] Lek-Heng Lim. Tensors and Hypermatrices , 2013 .