Nonlinear Fractional-Order Circuits and Systems: Motivation, A Brief Overview, and Some Future Directions

In recent years, fractional-order differential operators, and the dynamic models constructed based on these generalized operators have been widely considered in design and practical implementation of electrical circuits and systems. Simultaneously, facing with fractional-order dynamics and the nonlinear ones in electrical circuits and systems enforces us to use more advanced tools (in comparison to those commonly used in design and analysis of linear fractional-order/nonlinear integer-order circuits and systems) for their analysis, design, and implementation. Discussing on such a motivation, this tutorial paper aims to provide an overview on the recent achievements in proposing effective tools for analysis and design of nonlinear fractional-order circuits and systems. Moreover, some open problems, which can specify future directions for continuing research works on the aforementioned subject, are discussed.

[1]  Bin Wang,et al.  Fuzzy generalised predictive control for a class of fractional‐order non‐linear systems , 2018 .

[2]  Ahmed S. Elwakil,et al.  Emulation of current excited fractional-order capacitors and inductors using OTA topologies , 2016, Microelectron. J..

[3]  Manuel A. Duarte-Mermoud,et al.  Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[4]  B. Bandyopadhyay,et al.  Sliding mode control of uncertain fractional‐order systems: A reaching phase free approach , 2019, Asian Journal of Control.

[5]  Todd J. Freeborn,et al.  Fractional-order band-pass filter design using fractional-characteristic specimen functions , 2019, Microelectron. J..

[6]  Mohammad Saleh Tavazoei,et al.  Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations , 2008, IEEE Transactions on Industrial Electronics.

[7]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[8]  Karabi Biswas,et al.  Solid-state fractional capacitor using MWCNT-epoxy nanocomposite , 2017 .

[9]  Mohammad Saleh Tavazoei,et al.  Chaotic attractors in incommensurate fractional order systems , 2008 .

[10]  Qing-Long Han,et al.  Finite-Time Consensus Tracking for Incommensurate Fractional-Order Nonlinear Multiagent Systems With Directed Switching Topologies , 2020, IEEE Transactions on Cybernetics.

[11]  Mohammad Saleh Tavazoei,et al.  Notes on the State Space Realizations of Rational Order Transfer Functions , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Dominik Sierociuk,et al.  Experimental Evidence of Variable-Order Behavior of Ladders and Nested Ladders , 2013, IEEE Transactions on Control Systems Technology.

[14]  Nanocomposite Material Characterization of a Solid-State Fractional Capacitor , 2020, IEEE Transactions on Electron Devices.

[15]  Vu Ngoc Phat,et al.  New criteria for finite-time stability of nonlinear fractional-order delay systems: A Gronwall inequality approach , 2018, Appl. Math. Lett..

[16]  Mohammad Saleh Tavazoei,et al.  A proof for non existence of periodic solutions in time invariant fractional order systems , 2009, Autom..

[17]  C. Halijak,et al.  Approximations of Fixed Impedances , 1962 .

[18]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[19]  Jimin Yu,et al.  Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems , 2013, Autom..

[20]  Wei Fei,et al.  Characterization of CMOS Metamaterial Transmission Line by Compact Fractional-Order Equivalent Circuit Model , 2015, IEEE Transactions on Electron Devices.

[21]  M. Tavazoei Toward Searching Possible Oscillatory Region in Order Space for Nonlinear Fractional-Order Systems , 2014 .

[22]  S. Hassan HosseinNia,et al.  Development of Robust Fractional-Order Reset Control , 2018, IEEE Transactions on Control Systems Technology.

[23]  Young-Hun Lim,et al.  Stability and Stabilization of Fractional-Order Linear Systems Subject to Input Saturation , 2013, IEEE Transactions on Automatic Control.

[24]  Weisheng Chen,et al.  Convex Lyapunov functions for stability analysis of fractional order systems , 2017 .

[25]  Mohammad Saleh Tavazoei,et al.  The effect of fractionality nature in differences between computer simulation and experimental results of a chaotic circuit , 2013 .

[26]  Vahid Badri,et al.  Stability analysis of fractional order time‐delay systems: constructing new Lyapunov functions from those of integer order counterparts , 2019, IET Control Theory & Applications.

[27]  Mohammad Saleh Tavazoei,et al.  Maximum Number of Frequencies in Oscillations Generated by Fractional Order LTI Systems , 2010, IEEE Transactions on Signal Processing.

[28]  Serge Blonkowski,et al.  MIM capacitance variation under electrical stress , 2003, Microelectron. Reliab..

[29]  Koksal Erenturk,et al.  Fractional-Order $\hbox{PI}^{\lambda}\hbox{D}^{\mu}$ and Active Disturbance Rejection Control of Nonlinear Two-Mass Drive System , 2013, IEEE Transactions on Industrial Electronics.

[30]  E. Ahmed,et al.  Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models , 2007 .

[31]  Mohammad Saleh Tavazoei,et al.  A note on fractional-order derivatives of periodic functions , 2010, Autom..

[32]  S. Westerlund,et al.  Capacitor theory , 1994 .

[33]  V. V. Gafiychuk,et al.  Stability analysis and limit cycle in fractional system with Brusselator nonlinearities , 2008 .

[34]  J. A. Tenreiro Machado,et al.  Fractional generalization of memristor and higher order elements , 2013, Commun. Nonlinear Sci. Numer. Simul..

[35]  Mohammad Saleh Tavazoei,et al.  A Simplification in the proof presented for non existence of periodic solutions in time invariant fractional order systems , 2012 .

[36]  B. Boukamp Derivation of a Distribution Function of Relaxation Times for the (fractal) Finite Length Warburg. , 2017 .

[37]  Pavel Horský,et al.  A CMOS Follower-Type Voltage Regulator With a Distributed-Element Fractional-Order Control , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Bo Yu,et al.  Analog Circuit Implementation of Fractional-Order Memristor: Arbitrary-Order Lattice Scaling Fracmemristor , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  Jie Yang,et al.  Consensus of fractional-order multi-agent systems with input time delay , 2017 .

[40]  S. Westerlund Dead matter has memory , 1991 .

[41]  Donglian Qi,et al.  Non-linear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems , 2015 .

[42]  Neil Genzlinger A. and Q , 2006 .

[43]  Shaocheng Tong,et al.  Fuzzy Adaptive Fault-Tolerant Control of Fractional-Order Nonlinear Systems , 2021, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[44]  Jianwei Xia,et al.  Adaptive Backstepping Hybrid Fuzzy Sliding Mode Control for Uncertain Fractional-Order Nonlinear Systems Based on Finite-Time Scheme , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[45]  D. Mondal,et al.  Packaging of Single-Component Fractional Order Element , 2013, IEEE Transactions on Device and Materials Reliability.

[46]  Guoqi Zhang,et al.  Approximate limit cycles of coupled nonlinear oscillators with fractional derivatives , 2020 .

[47]  Hua Li,et al.  Rhythm oscillation in fractional-order Relaxation oscillator and its application in image enhancement , 2018, J. Comput. Appl. Math..

[48]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[49]  Jun-Guo Lu,et al.  Stability Analysis of a Class of Nonlinear Fractional-Order Systems , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[50]  Iasson Karafyllis,et al.  Converse Lyapunov–Krasovskii theorems for systems described by neutral functional differential equations in Hale's form , 2012, Int. J. Control.

[51]  Mohammad Saleh Tavazoei Upper and Lower Bounds for the Maximum Number of Frequencies That Can Be Generated by a Class of Fractional Oscillators , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[52]  Roberto Kawakami Harrop Galvão,et al.  Fractional Order Modeling of Large Three-Dimensional RC Networks , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[53]  M. Duarte-Mermoud,et al.  Converse theorems in Lyapunov’s second method and applications for fractional order systems , 2019, TURKISH JOURNAL OF MATHEMATICS.

[54]  Lu Liu,et al.  LMI-Based Stability of Nonlinear Non-Autonomous Fractional-Order Systems With Multiple Time Delays , 2019, IEEE Access.

[55]  Z. Zeng,et al.  Multiple Mittag-Leffler Stability of Delayed Fractional-Order Cohen–Grossberg Neural Networks via Mixed Monotone Operator Pair , 2020, IEEE Transactions on Cybernetics.

[56]  Isabel S. Jesus,et al.  Development of fractional order capacitors based on electrolyte processes , 2009 .

[57]  Karabi Biswas,et al.  Realization of a Constant Phase Element and Its Performance Study in a Differentiator Circuit , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[58]  Ahmed S. Elwakil,et al.  Electronically Tunable Fully Integrated Fractional-Order Resonator , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[59]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[60]  Manuel A. Duarte-Mermoud,et al.  Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays , 2020, Commun. Nonlinear Sci. Numer. Simul..

[61]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[62]  Ahmed S. Elwakil,et al.  Experimental demonstration of fractional-order oscillators of orders 2.6 and 2.7 , 2017 .

[63]  Leang-San Shieh,et al.  State-Space Self-Tuning Control for Stochastic Fractional-Order Chaotic Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[64]  Mathieu Moze,et al.  Pseudo state feedback stabilization of commensurate fractional order systems , 2009, 2009 European Control Conference (ECC).

[65]  Vu Ngoc Phat,et al.  Improved Approach for Finite-Time Stability of Nonlinear Fractional-Order Systems With Interval Time-Varying Delay , 2019, IEEE Transactions on Circuits and Systems II: Express Briefs.

[66]  Liping Chen,et al.  Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems With Caputo Derivative , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[67]  Ying-Ying Tan,et al.  Consensus analysis of fractional-order nonlinear multi-agent systems with distributed and input delays , 2019, Neurocomputing.

[68]  Karabi Biswas,et al.  Practical Realization of Tunable Fractional Order Parallel Resonator and Fractional Order Filters , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[69]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[70]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[71]  Mohammad Saleh Tavazoei,et al.  Passive Realization of Fractional-Order Impedances by a Fractional Element and RLC Components: Conditions and Procedure , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[72]  Siddhartha Sen,et al.  Optimal Design for Realizing a Grounded Fractional Order Inductor Using GIC , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[73]  Yige Zhao,et al.  Feedback stabilisation control design for fractional order non-linear systems in the lower triangular form , 2016 .

[74]  Qing-Long Han,et al.  Robust adaptive fault-tolerant consensus control for uncertain nonlinear fractional-order multi-agent systems with directed topologies , 2020, Autom..

[75]  A. Lázaro,et al.  Temperature-Dependent Thermal Capacitance Characterization for SOI-MOSFETs , 2019, IEEE Transactions on Electron Devices.

[76]  Ahmed S. Elwakil,et al.  High-Frequency Capacitorless Fractional-Order CPE and FI Emulator , 2018, Circuits Syst. Signal Process..

[77]  Mohammad Saleh Tavazoei,et al.  Fractional/distributed-order systems and irrational transfer functions with monotonic step responses , 2014 .

[78]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[79]  YangQuan Chen,et al.  Finite energy Lyapunov function candidate for fractional order general nonlinear systems , 2019, Commun. Nonlinear Sci. Numer. Simul..

[80]  Milad Siami,et al.  More Details on Analysis of Fractional-order Van der Pol Oscillator , 2009 .

[81]  N. Mottram,et al.  Derivative-order-dependent stability and transient behaviour in a predator–prey system of fractional differential equations , 2019, Letters in Biomathematics.

[82]  A. G. RADWAN,et al.  ON THE FRACTIONAL-ORDER MEMRISTOR MODEL , 2013 .

[83]  P. Olver Nonlinear Systems , 2013 .

[84]  A. Loria,et al.  A converse Lyapunov theorem for semiglobal practical asymptotic stability and application to cascades-based control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[85]  Changpin Li,et al.  Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle , 2007 .

[86]  Anne Kuefer,et al.  Voltage Stability Of Electric Power Systems , 2016 .

[87]  Youan Zhang,et al.  An exploration on adaptive iterative learning control for a class of commensurate high-order uncertain nonlinear fractional order systems , 2018, IEEE/CAA Journal of Automatica Sinica.

[88]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[89]  Zhongjin Guo,et al.  Oscillatory region and asymptotic solution of fractional van der Pol oscillator via residue harmonic balance technique , 2011 .

[90]  J. Gómez‐Aguilar Multiple attractors and periodicity on the Vallis model for El Niño/La Niña-Southern oscillation model , 2020 .

[91]  Bo Zhang,et al.  High-Power Fractional-Order Capacitor With 1 < α < 2 Based on Power Converter , 2018, IEEE Trans. Ind. Electron..

[92]  Changyun Wen,et al.  Adaptive Backstepping Control for Fractional-Order Nonlinear Systems with External Disturbance and Uncertain Parameters Using Smooth Control , 2020, ArXiv.

[93]  Junhai Luo,et al.  State-Feedback Control for Fractional-Order Nonlinear Systems Subject to Input Saturation , 2014 .

[94]  Hieu Trinh,et al.  A Linearized Stability Theorem for Nonlinear Delay Fractional Differential Equations , 2018, IEEE Transactions on Automatic Control.

[95]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[96]  S. Roy On the Realization of a Constant-Argument Immittance or Fractional Operator , 1967, IEEE Transactions on Circuit Theory.

[97]  Arunangshu Ghosh,et al.  An Improved Fractional-Order Circuit Model for Voltammetric Taste Sensor System With Infused Tea as Analyte , 2020, IEEE Sensors Journal.

[98]  Alain Oustaloup,et al.  Fractional order sinusoidal oscillators: Optimization and their use in highly linear FM modulation , 1981 .

[99]  Yongcan Cao,et al.  Distributed Coordination of Networked Fractional-Order Systems , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[100]  C. B. Tabi,et al.  Dynamical analysis of the FitzHugh–Nagumo oscillations through a modified Van der Pol equation with fractional-order derivative term , 2018, International Journal of Non-Linear Mechanics.

[101]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[102]  Jinde Cao,et al.  Global leader-following consensus in finite time for fractional-order multi-agent systems with discontinuous inherent dynamics subject to nonlinear growth , 2020 .

[103]  Yi-Fei Pu,et al.  Fracmemristor: Fractional-Order Memristor , 2016, IEEE Access.

[104]  A. Elwakil,et al.  Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples , 2008 .

[105]  Mohammad Saleh Tavazoei,et al.  Stabilization of Unstable Fixed Points of Fractional-Order Systems by Fractional-Order Linear Controllers and Its Applications in Suppression of Chaotic Oscillations , 2010 .

[106]  José António Tenreiro Machado,et al.  Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay , 2018, J. Frankl. Inst..

[107]  Ahmed M. Soliman,et al.  Fractional Order Butterworth Filter: Active and Passive Realizations , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[108]  Vahid Badri,et al.  Non-Uniform Reducing the Involved Differentiators’ Orders and Lyapunov Stability Preservation Problem in Dynamic Systems , 2020, IEEE Transactions on Circuits and Systems II: Express Briefs.

[109]  J. K. Liu,et al.  Asymptotic limit cycle of fractional van der Pol oscillator by homotopy analysis method and memory-free principle , 2016 .

[110]  Ahmed S Elwakil,et al.  Fractional-order circuits and systems: An emerging interdisciplinary research area , 2010, IEEE Circuits and Systems Magazine.

[111]  Jirí Vlach,et al.  RC models of a constant phase element , 2011, Int. J. Circuit Theory Appl..

[112]  Michael Tiller,et al.  Introduction to Physical Modeling with Modelica , 2001 .

[113]  Junzhi Yu,et al.  LMI Conditions for Global Stability of Fractional-Order Neural Networks , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[114]  Xiaona Song,et al.  Adaptive Command Filtered Neuro-Fuzzy Control Design for Fractional-Order Nonlinear Systems With Unknown Control Directions and Input Quantization , 2021, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[115]  Pedro Castillo,et al.  A Fractional Nonlinear PI-Structure Control for Robust Attitude Tracking of Quadrotors , 2019, IEEE Transactions on Aerospace and Electronic Systems.

[116]  A. Elwakil,et al.  Nonlinear charge-voltage relationship in constant phase element , 2020 .

[117]  YangQuan Chen,et al.  Asymptotical stability of fractional order systems with time delay via an integral inequality , 2018, IET Control Theory & Applications.

[118]  Mohammed E. Fouda,et al.  Experimental Verification of Triple Lobes Generation in Fractional Memristive Circuits , 2018, IEEE Access.

[119]  Ping Gong,et al.  Distributed consensus of non-linear fractional-order multi-agent systems with directed topologies , 2016 .

[120]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[121]  Norbert Herencsar,et al.  Series-, Parallel-, and Inter-Connection of Solid-State Arbitrary Fractional-Order Capacitors: Theoretical Study and Experimental Verification , 2018, IEEE Access.

[122]  D. Cafagna,et al.  Fractional calculus: A mathematical tool from the past for present engineers [Past and present] , 2007, IEEE Industrial Electronics Magazine.

[123]  Faris Alzahrani,et al.  Observer‐based modified repetitive control for fractional‐order non‐linear systems with unknown disturbances , 2019, IET Control Theory & Applications.

[124]  B. K. Roy,et al.  Sliding Mode Control Versus Fractional-Order Sliding Mode Control: Applied to a Magnetic Levitation System , 2020 .

[125]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[126]  B. Goswami,et al.  Fabrication of a Fractional Order Capacitor With Desired Specifications: A Study on Process Identification and Characterization , 2011, IEEE Transactions on Electron Devices.

[127]  Jinde Cao,et al.  Composite Learning Adaptive Dynamic Surface Control of Fractional-Order Nonlinear Systems , 2020, IEEE Transactions on Cybernetics.

[128]  C. Kellett Classical Converse Theorems in Lyapunov's Second Method , 2015, 1502.04809.

[129]  Changpin Li,et al.  Fractional dynamical system and its linearization theorem , 2013 .

[130]  Xinzhi Liu,et al.  Lyapunov and external stability of Caputo fractional order switching systems , 2019, Nonlinear Analysis: Hybrid Systems.

[131]  Ahmed Soltan,et al.  Advance Interconnect Circuit Modeling Design Using Fractional-Order Elements , 2020, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[132]  Qi Xu,et al.  Window function for fractional-order HP Ti O 2 non-linear memristor model , 2018, IET Circuits Devices Syst..

[133]  Mohammad Saleh Tavazoei,et al.  Fractional order chaotic systems: history, achievements, applications, and future challenges , 2020 .

[134]  H. T. Tuan,et al.  Stability of fractional‐order nonlinear systems by Lyapunov direct method , 2017, IET Control Theory & Applications.

[135]  Ahmed S. Elwakil,et al.  Generalized Fully Adjustable Structure for Emulating Fractional-Order Capacitors and Inductors of Orders less than Two , 2020, Circuits Syst. Signal Process..

[136]  Ahmed S. Elwakil,et al.  Electronically tunable fractional-order highpass filter for phantom electroencephalographic system model implementation , 2019, AEU - International Journal of Electronics and Communications.

[137]  Leon O. Chua,et al.  Fractional memristor , 2018 .

[138]  Debasmita Mondal,et al.  Design and performance study of phase‐locked loop using fractional‐order loop filter , 2015, Int. J. Circuit Theory Appl..

[139]  N. D. Cong,et al.  Linearized Asymptotic Stability for Fractional Differential Equations , 2015, 1512.04989.

[140]  M. Tavazoei,et al.  Constrained swarm stabilization of fractional order linear time invariant swarm systems , 2016, IEEE/CAA Journal of Automatica Sinica.

[141]  Mohammad Saleh Tavazoei,et al.  Realizability of Fractional-Order Impedances by Passive Electrical Networks Composed of a Fractional Capacitor and RLC Components , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[142]  Alain Oustaloup,et al.  A Lyapunov approach to the stability of fractional differential equations , 2009, Signal Process..

[143]  Xiaona Song,et al.  Observer-Based Adaptive Hybrid Fuzzy Resilient Control for Fractional-Order Nonlinear Systems with Time-Varying Delays and Actuator Failures , 2019 .

[144]  L. Chua Memristor-The missing circuit element , 1971 .

[145]  O. Petersons,et al.  The voltage coefficients of precision capacitors , 1963, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.