Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains

[1]  Mikhail A. Semenov,et al.  Analysis of Convergence of an Evolutionary Algorithm with Self-Adaptation using a Stochastic Lyapunov function , 2003, Evolutionary Computation.

[2]  Olivier François,et al.  Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties , 2003, Theor. Comput. Sci..

[3]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[4]  William E. Hart,et al.  On The Convergence Properties Of A Simple Self-adaptive Evolutionary Algorithm , 2002, GECCO.

[5]  Mikhail A. Semenov Convergence Velocity Of Evolutionary Algorithm With Self-adaptation , 2002, GECCO.

[6]  L. A. Breyer,et al.  Convergence of simulated annealing using Foster-Lyapunov criteria , 2001, Journal of Applied Probability.

[7]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[8]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[9]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[10]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[11]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[12]  C. Robert Convergence Control Methods for Markov Chain Monte Carlo Algorithms , 1995 .

[13]  Nikolaus Hansen,et al.  A Derandomized Approach to Self-Adaptation of Evolution Strategies , 1994, Evolutionary Computation.

[14]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[15]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[16]  Bruce W. Schmeiser,et al.  Batch Size Effects in the Analysis of Simulation Output , 1982, Oper. Res..

[17]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[18]  P. Billingsley,et al.  Probability and Measure , 1980 .