Association Schemes and Coding Theory
暂无分享,去创建一个
[1] A. Robert Calderbank,et al. On a Pair of Dual Subschemes of the Hamming Scheme Hn(q) , 1985, Eur. J. Comb..
[2] Claude Carlet,et al. On Correlation-Immune Functions , 1991, CRYPTO.
[3] D. Stanton. Orthogonal Polynomials and Chevalley Groups , 1984 .
[4] J. J. Seidel,et al. Orthogonal Matrices with Zero Diagonal , 1967, Canadian Journal of Mathematics.
[5] Jaume Pujol,et al. Translation-invariant propelinear codes , 1997, IEEE Trans. Inf. Theory.
[6] S. G. Hoggar,et al. t-Designs in Projective Spaces , 1982, Eur. J. Comb..
[7] H. F. Blichfeldt. The minimum value of quadratic forms, and the closest packing of spheres , 1929 .
[8] O. Tamaschke. Zur Theorie der Permutationsgruppen mit regulärer Untergruppe. I , 1962 .
[9] Vladimir I. Levenshtein,et al. Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces , 1995, IEEE Trans. Inf. Theory.
[10] A. NEUMAIER,et al. Duality in coherent configurations , 1989, Comb..
[11] Claude E. Shannon,et al. The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.
[12] Gérard D. Cohen,et al. Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.
[13] R. C. Bose. Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .
[14] J. Seidel,et al. Spherical codes and designs , 1977 .
[15] Vera Pless,et al. On the coveting radius of extremal self-dual codes , 1983, IEEE Trans. Inf. Theory.
[16] Richard Askey,et al. A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols. , 1979 .
[17] Tatsuro Ito,et al. Current research on algebraic combinatorics , 1986, Graphs Comb..
[18] I. J. Schoenberg,et al. An extremum problem for polynomials , 1960 .
[19] Dennis Stanton. An Introduction to Group Representations and Orthogonal Polynomials , 1990 .
[20] Robert J. McEliece,et al. A low-rate improvement on the Elias bound (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[21] Vladimir I. Levenshtein. Split Orthogonal Arrays and Maximum Independent Resilient Systems of Functions , 1997, Des. Codes Cryptogr..
[22] W. Haemers,et al. Association schemes , 1996 .
[23] Douglas R. Stinson,et al. Association Schemes for Ordered Orthogonal Arrays and (T, M, S)-Nets , 1999, Canadian Journal of Mathematics.
[24] Douglas R. Stinson,et al. Bounds for Resilient Functions and Orthogonal Arrays , 1994, CRYPTO.
[25] Danyo Danev,et al. Upper bounds on the minimum distance of spherical codes , 1996, IEEE Trans. Inf. Theory.
[26] R. C. Bose,et al. On a class of partially balanced incomplete block designs , 1965 .
[27] Simon Litsyn,et al. On Upper Bounds for Minimum Distance and Covering Radius of Non-binary Codes , 1998, Des. Codes Cryptogr..
[28] J. Macwilliams. A theorem on the distribution of weights in a systematic code , 1963 .
[29] D. G. Higman. Coherent configurations , 1975 .
[30] P. Delsarte. Hahn Polynomials, Discrete Harmonics, and t-Designs , 1978 .
[31] D. A. Leonard. Orthogonal Polynomials, Duality and Association Schemes , 1982 .
[32] Andries E. Brouwer,et al. The triply shortened binary Hamming code is optimal , 1977, Discret. Math..
[33] P. Boyvalenkov,et al. ON LINEAR PROGRAMMING BOUNDS FOR CODES IN POLYNOMIAL METRIC SPACES , 1998 .
[34] Heeralal Janwa,et al. Some new upper bounds on the covering radius of binary linear codes , 1989, IEEE Trans. Inf. Theory.
[35] Tannaka-Krein duality for association schemes , 1982 .
[36] N. J. A. Sloane,et al. Inequalities for covering codes , 1988, IEEE Trans. Inf. Theory.
[37] C. Shannon. Probability of error for optimal codes in a Gaussian channel , 1959 .
[38] V M Sidel'nikov. NEW BOUNDS FOR DENSEST PACKING OF SPHERES IN n-DIMENSIONAL EUCLIDEAN SPACE , 1974 .
[39] Thomas Siegenthaler,et al. Correlation-immunity of nonlinear combining functions for cryptographic applications , 1984, IEEE Trans. Inf. Theory.
[40] D. Vere-Jones. FINITE BIVARIATE DISTRIBUTIONS AND SEMIGROUPS OF NON-NEGATIVE MATRICES , 1971 .
[41] Charles F. Dunkl,et al. Discrete quadrature and bounds on $t$-designs. , 1979 .
[42] V. Levenshtein. Designs as maximum codes in polynomial metric spaces , 1992 .
[43] E. Bannai. Orthogonal Polynomials in Coding Theory and Algebraic Combinatorics , 1990 .
[44] Richard M. Wilson,et al. On $t$-designs , 1975 .
[45] Alexander Schrijver,et al. A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.
[46] R. Rankin. The Closest Packing of Spherical Caps in n Dimensions , 1955, Proceedings of the Glasgow Mathematical Association.
[47] S. P. Lloyd. Binary block coding , 1957 .
[48] A. A. Tietavainen. An upper bound on the covering radius as a function of the dual distance , 1990 .
[49] Patrick Solé. A Lloyd Theorem in Weakly Metric Association Schemes , 1989, Eur. J. Comb..
[50] Douglas R. Stinson,et al. Combinatorial designs and cryptography , 1993 .
[51] V. Levenshtein. Equivalence of Delsarte's bounds for codes and designs in symmetric association schemes, and some applications , 1999 .
[52] R. Gangolli,et al. Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's brownian motion of several parameters , 1967 .
[53] Vladimir A. Yudin. Lower bounds for spherical designs , 1997 .
[54] Surveys in Combinatorics: Strongly regular graphs , 1979 .
[55] Matti J. Aaltonen,et al. A new upper bound on nonbinary block codes , 1990, Discret. Math..
[56] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[57] Robert J. McEliece,et al. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.
[58] Patrick Solé,et al. Covering radius, codimension, dual-distance width , 1993, IEEE Trans. Inf. Theory.
[59] Simon Litsyn,et al. Upper Bounds on the Covering Radius of a Code with a Given Dual Distance , 1996, Eur. J. Comb..
[60] C. R. Rao,et al. Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .
[61] François Jaeger,et al. On Spin Models, Triply Regular Association Schemes, and Duality , 1995 .
[62] Gabor Szegö,et al. [60–6] An Extremum Problem for Polynomials , 1982 .
[63] N. Sloane,et al. An Introduction to Association Schemes and Coding Theory , 1975 .
[64] Xavier L. Hubaut,et al. Strongly regular graphs , 1975, Discret. Math..
[65] R. C. Bose,et al. Classification and Analysis of Partially Balanced Incomplete Block Designs with Two Associate Classes , 1952 .
[66] Philippe Delsarte,et al. Four Fundamental Parameters of a Code and Their Combinatorial Significance , 1973, Inf. Control..
[67] Tom Verhoeff,et al. An updated table of minimum-distance bounds for binary linear codes , 1987, IEEE Trans. Inf. Theory.
[68] H. Mattson,et al. New 5-designs , 1969 .
[69] Arnold Neumaier,et al. Distances, Graphs and Designs , 1980, Eur. J. Comb..
[70] E. Bannai. ON TIGHT DESIGNS , 1977 .
[71] D. G. Higman. Intersection matrices for finite permutation groups , 1967 .
[72] J. Seidel,et al. BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .
[73] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[74] Hendrik W. Lenstra,et al. Two theorems on perfect codes , 1972, Discret. Math..
[75] Philippe Delsarte,et al. Extending the T-design Concept , 1993 .
[76] Elwyn R. Berlekamp,et al. Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II , 1967, Inf. Control..
[77] Hsien-Chtjng Wang,et al. TWO-POINT HOMOGENEOUS SPACES , 1952 .
[78] H. Mattson,et al. Coding and Combinatorics , 1974 .
[79] Jean-Marie Goethals,et al. On the Nonbinary Johnson Scheme , 1985, Eur. J. Comb..
[80] Alexander A. Ivanov,et al. Galois correspondence between permutation groups and cellular rings (association schemes) , 1990, Graphs Comb..
[81] N. J. A. Sloane,et al. A strengthening of the Assmus-Mattson theorem , 1991, IEEE Trans. Inf. Theory.
[82] R. C. Bose,et al. On Linear Associative Algebras Corresponding to Association Schemes of Partially Balanced Designs , 1959 .
[83] Ron M. Roth,et al. Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.