Regions of multistationarity in cascades of Goldbeter–Koshland loops

We consider cascades of enzymatic Goldbeter–Koshland loops (Goldbeter and Koshland in Proc Natl Acad Sci 78(11):6840–6844, 1981) with any number n of layers, for which there exist two layers involving the same phosphatase. Even if the number of variables and the number of conservation laws grow linearly with n, we find explicit regions in reaction rate constant and total conservation constant space for which the associated mass-action kinetics dynamical system is multistationary. Our computations are based on the theoretical results of our companion paper (Bihan, Dickenstein and Giaroli 2018, preprint: arXiv:1807.05157) which are inspired by results in real algebraic geometry by Bihan et al. (SIAM J Appl Algebra Geom, 2018).

[1]  Alicia Dickenstein,et al.  The Structure of MESSI Biological Systems , 2016, SIAM J. Appl. Dyn. Syst..

[2]  Badal Joshi,et al.  Atoms of multistationarity in chemical reaction networks , 2011, Journal of Mathematical Chemistry.

[3]  Eduardo Sontag,et al.  On the number of steady states in a multiple futile cycle , 2008, Journal of mathematical biology.

[4]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[5]  Elisenda Feliu,et al.  An Algebraic Approach to Signaling Cascades with n Layers , 2010, Bulletin of Mathematical Biology.

[6]  J. Gunawardena,et al.  Monostationarity and Multistationarity in Tree Networks of Goldbeter–Koshland Loops , 2019, Bulletin of Mathematical Biology.

[7]  Alan S. Futran,et al.  Divergent effects of intrinsically active MEK variants on developmental Ras signaling , 2017, Nature Genetics.

[8]  Jörg Raisch,et al.  Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. , 2008, Mathematical biosciences.

[9]  Dietrich Flockerzi,et al.  Multistationarity in Sequential Distributed Multisite Phosphorylation Networks , 2013, Bulletin of Mathematical Biology.

[10]  D. Koshland,et al.  An amplified sensitivity arising from covalent modification in biological systems. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: I. the Injectivity Property * , 2006 .

[12]  Alicia Dickenstein,et al.  Lower bounds for positive roots and regions of multistationarity in chemical reaction networks , 2018, Journal of Algebra.

[13]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Ii. the Species-reactions Graph , 2022 .

[14]  Murad Banaji,et al.  The Inheritance of Nondegenerate Multistationarity in Chemical Reaction Networks , 2016, SIAM J. Appl. Math..

[15]  Alicia Dickenstein,et al.  Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry , 2013, Found. Comput. Math..

[16]  Elisenda Feliu,et al.  Identifying parameter regions for multistationarity , 2016, PLoS Comput. Biol..

[17]  Dietrich Flockerzi,et al.  Subnetwork Analysis for Multistationarity in Mass Action Kinetics , 2008 .

[18]  Mercedes Pérez Millán,et al.  MAPK's networks and their capacity for multistationarity due to toric steady states. , 2014, Mathematical biosciences.

[19]  Elisenda Feliu,et al.  Simplifying biochemical models with intermediate species , 2013, Journal of The Royal Society Interface.

[20]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[21]  Elisenda Feliu,et al.  Enzyme-sharing as a cause of multi-stationarity in signalling systems , 2011, Journal of The Royal Society Interface.

[22]  Luca Cardelli,et al.  Unlimited multistability and Boolean logic in microbial signalling , 2015, Journal of The Royal Society Interface.

[23]  Carsten Conradi,et al.  Catalytic constants enable the emergence of bistability in dual phosphorylation , 2014, Journal of The Royal Society Interface.

[24]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[25]  Zhe Shi,et al.  The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC , 2016, Oncology letters.

[26]  Matthias Wolfrum,et al.  Bernstein's second theorem and Viro's method for sparse polynomial systems in chemistry , 2005, Adv. Appl. Math..

[27]  Francisco Santos,et al.  A Polyhedral Method for Sparse Systems with Many Positive Solutions , 2018, SIAM J. Appl. Algebra Geom..

[28]  Alejandra C. Ventura,et al.  Signaling cascades transmit information downstream and upstream but unlikely simultaneously , 2016, BMC Systems Biology.