Fusion of shallow and deep features for classification of high-resolution remote sensing images

Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.

[1]  Bo Du,et al.  Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art , 2016, IEEE Geoscience and Remote Sensing Magazine.

[2]  Jon Atli Benediktsson,et al.  Linear Versus Nonlinear PCA for the Classification of Hyperspectral Data Based on the Extended Morphological Profiles , 2012, IEEE Geoscience and Remote Sensing Letters.

[3]  Lorenzo Bruzzone,et al.  Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Moussa Sofiane Karoui,et al.  Classification of Quickbird imagery over urban area using convolutional neural network , 2017, 2017 Joint Urban Remote Sensing Event (JURSE).

[5]  Melba M. Crawford,et al.  Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning , 2014, IEEE Signal Processing Magazine.

[6]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[7]  Yansheng Li,et al.  Unsupervised Spectral–Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[8]  Y. Ouma,et al.  Analysis of co‐occurrence and discrete wavelet transform textures for differentiation of forest and non‐forest vegetation in very‐high‐resolution optical‐sensor imagery , 2008 .

[9]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[10]  Jie Geng,et al.  Spectral–Spatial Classification of Hyperspectral Image Based on Deep Auto-Encoder , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  Kim-Kwang Raymond Choo,et al.  Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification , 2016, Soft Computing.

[12]  Liangpei Zhang,et al.  A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Pedram Ghamisi,et al.  Spectral–Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Liangpei Zhang,et al.  A Multichannel Gray Level Co-Occurrence Matrix for Multi/Hyperspectral Image Texture Representation , 2014, Remote. Sens..

[15]  Xiao Xiang Zhu,et al.  A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data , 2016, IEEE Geoscience and Remote Sensing Letters.

[16]  Jon Atli Benediktsson,et al.  A Survey on Spectral–Spatial Classification Techniques Based on Attribute Profiles , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Ying Li,et al.  Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network , 2017, Remote. Sens..

[18]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[20]  Yann LeCun,et al.  Convolutional networks and applications in vision , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[21]  Liangpei Zhang,et al.  An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Features for the Classification of High-Resolution Remotely Sensed Imagery , 2013, IEEE Transactions on Geoscience and Remote Sensing.