Rapid in vivo validation of candidate drivers derived from the PTEN-mutant prostate metastasis genome.

[1]  W. Isaacs,et al.  Tracking the clonal origin of lethal prostate cancer. , 2013, The Journal of clinical investigation.

[2]  S. Kurtz,et al.  Recurrent deletion of 3p13 targets multiple tumour suppressor genes and defines a distinct subgroup of aggressive ERG fusion‐positive prostate cancers , 2013, The Journal of pathology.

[3]  M. Holden,et al.  Identification of eight candidate target genes of the recurrent 3p12–p14 loss in cervical cancer by integrative genomic profiling , 2013, The Journal of pathology.

[4]  Gerald C. Chu,et al.  Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. , 2013, Cancer research.

[5]  D. Kalvakolanu,et al.  Regulation of snoRNAs in cancer: close encounters with interferon. , 2013, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[6]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[7]  L. Garraway,et al.  The genomic landscape of prostate cancer , 2012, Front. Endocrin..

[8]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[9]  A. Sivachenko,et al.  Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer , 2012, Nature Genetics.

[10]  Benjamin J. Raphael,et al.  The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2016 .

[11]  Christof Fellmann,et al.  A pipeline for the generation of shRNA transgenic mice , 2012, Nature Protocols.

[12]  S. Reddy,et al.  GRIM-1, a Novel Growth Suppressor, Inhibits rRNA Maturation by Suppressing Small Nucleolar RNAs , 2011, PloS one.

[13]  Martha E. Zeeman,et al.  Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. , 2011, Cancer cell.

[14]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[15]  Gerald C. Chu,et al.  SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression , 2011, Nature.

[16]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[17]  C. Sander,et al.  Integrative genomic profiling of human prostate cancer. , 2010, Cancer cell.

[18]  L. Chin,et al.  Non-germline genetically engineered mouse models for translational cancer research , 2010, Nature Reviews Cancer.

[19]  J. Abastado,et al.  Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. , 2010, The Journal of clinical investigation.

[20]  P. Pandolfi,et al.  Faithfull modeling of PTEN loss driven diseases in the mouse. , 2010, Current topics in microbiology and immunology.

[21]  Jun Luo,et al.  Copy Number Analysis Indicates Monoclonal Origin of Lethal Metastatic Prostate Cancer , 2009, Nature Medicine.

[22]  Paula D. Bos,et al.  Metastasis: from dissemination to organ-specific colonization , 2009, Nature Reviews Cancer.

[23]  David A. Tuveson,et al.  Maximizing mouse cancer models , 2007, Nature Reviews Cancer.

[24]  Jason A. Koutcher,et al.  Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis , 2005, Nature.

[25]  R. Eils,et al.  From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression , 2003, Proceedings of the National Academy of Sciences of the United States of America.