Maximum Lyapunov exponent-based multiple chaotic slime mold algorithm for real-world optimization

[1]  S. Harada,et al.  Data-driven automated control algorithm for floating-zone crystal growth derived by reinforcement learning , 2023, Scientific reports.

[2]  T. Nguyen A novel approach with a fuzzy sliding mode proportional integral control algorithm tuned by fuzzy method (FSMPIF) , 2023, Scientific reports.

[3]  M. Vai,et al.  A low cost neuromorphic learning engine based on a high performance supervised SNN learning algorithm , 2023, Scientific Reports.

[4]  M. A. Mohamed,et al.  Arithmetic optimization algorithm based maximum power point tracking for grid-connected photovoltaic system , 2023, Scientific Reports.

[5]  S. Osher,et al.  Accurate real space iterative reconstruction (RESIRE) algorithm for tomography , 2023, Scientific Reports.

[6]  M. Azizi,et al.  Squid Game Optimizer (SGO): a novel metaheuristic algorithm , 2023, Scientific Reports.

[7]  B. Qu,et al.  A Survey on Evolutionary Constrained Multiobjective Optimization , 2023, IEEE Transactions on Evolutionary Computation.

[8]  Guo Wei,et al.  HG-SMA: hierarchical guided slime mould algorithm for smooth path planning , 2023, Artificial Intelligence Review.

[9]  Ya Li,et al.  Prisoner’s dilemma game model Based on historical strategy information , 2023, Scientific Reports.

[10]  Shangce Gao,et al.  Spherical search algorithm with adaptive population control for global continuous optimization problems , 2022, Appl. Soft Comput..

[11]  Shangce Gao,et al.  An adaptive replacement strategy-incorporated particle swarm optimizer for wind farm layout optimization , 2022, Energy Conversion and Management.

[12]  E. Uncuoğlu,et al.  Comparison of neural network, Gaussian regression, support vector machine, long short-term memory, multi-gene genetic programming, and M5 Trees methods for solving civil engineering problems , 2022, Appl. Soft Comput..

[13]  A. Alimi,et al.  DPb-MOPSO: A Dynamic Pareto bi-level Multi-objective Particle Swarm Optimization Algorithm , 2022, Appl. Soft Comput..

[14]  Ziqian Wang,et al.  Symmetric uncertainty-incorporated probabilistic sequence-based ant colony optimization for feature selection in classification , 2022, Knowl. Based Syst..

[15]  Mengchu Zhou,et al.  Information-Theory-based Nondominated Sorting Ant Colony Optimization for Multiobjective Feature Selection in Classification , 2022, IEEE Transactions on Cybernetics.

[16]  H. Hasegawa,et al.  Complex-Valued Neural Networks: A Comprehensive Survey , 2022, IEEE/CAA Journal of Automatica Sinica.

[17]  M. Al-Betar,et al.  Backpropagation Neural Network optimization and software defect estimation modelling using a hybrid Salp Swarm optimizer-based Simulated Annealing Algorithm , 2022, Knowl. Based Syst..

[18]  Ahmad M. Khasawneh,et al.  Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: a comprehensive survey, applications, comparative analysis, and results , 2022, Neural Computing and Applications.

[19]  Essam H. Houssein,et al.  An efficient slime mould algorithm for solving multi-objective optimization problems , 2022, Expert Syst. Appl..

[20]  Zhenyu Lei,et al.  Improving Dendritic Neuron Model With Dynamic Scale-Free Network-Based Differential Evolution , 2022, IEEE/CAA Journal of Automatica Sinica.

[21]  Xianglian Meng,et al.  Dendritic neuron model trained by information feedback-enhanced differential evolution algorithm for classification , 2021, Knowl. Based Syst..

[22]  Ali Asghar Heidari,et al.  Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection , 2021, Knowl. Based Syst..

[23]  Jun Tang,et al.  A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends , 2021, IEEE/CAA Journal of Automatica Sinica.

[24]  Mengchu Zhou,et al.  Fully Complex-Valued Dendritic Neuron Model , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[25]  Zhi-Hui Zhan,et al.  A survey on evolutionary computation for complex continuous optimization , 2021, Artificial Intelligence Review.

[26]  W. Pedrycz,et al.  An Overview and Experimental Study of Learning-Based Optimization Algorithms for the Vehicle Routing Problem , 2021, IEEE/CAA Journal of Automatica Sinica.

[27]  Shengxiang Yang,et al.  Learning to Optimize: Reference Vector Reinforcement Learning Adaption to Constrained Many-Objective Optimization of Industrial Copper Burdening System , 2021, IEEE Transactions on Cybernetics.

[28]  Jiujun Cheng,et al.  MO4: A Many-Objective Evolutionary Algorithm for Protein Structure Prediction , 2021, IEEE Transactions on Evolutionary Computation.

[29]  Jiujun Cheng,et al.  Chaotic Local Search-Based Differential Evolution Algorithms for Optimization , 2021, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[30]  Hao Chen,et al.  Chaos-assisted multi-population salp swarm algorithms: Framework and case studies , 2021, Expert Syst. Appl..

[31]  Yalan Zhou,et al.  Multiobjective Multiple Neighborhood Search Algorithms for Multiobjective Fleet Size and Mix Location-Routing Problem With Time Windows , 2021, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[32]  Yaochu Jin,et al.  A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts , 2021, IEEE/CAA Journal of Automatica Sinica.

[33]  Yirui Wang,et al.  Scale-free Network-based Differential Evolution , 2021, Swarm Evol. Comput..

[34]  Risto Miikkulainen,et al.  A biological perspective on evolutionary computation , 2021, Nature Machine Intelligence.

[35]  Yang Yu,et al.  A multi-layered gravitational search algorithm for function optimization and real-world problems , 2021, IEEE/CAA Journal of Automatica Sinica.

[36]  Fei Yu,et al.  Triple Archives Particle Swarm Optimization , 2020, IEEE Transactions on Cybernetics.

[37]  Huiling Chen,et al.  Slime mould algorithm: A new method for stochastic optimization , 2020, Future Gener. Comput. Syst..

[38]  Jiujun Cheng,et al.  An aggregative learning gravitational search algorithm with self-adaptive gravitational constants , 2020, Expert Syst. Appl..

[39]  J. Carrasco,et al.  Recent Trends in the Use of Statistical Tests for Comparing Swarm and Evolutionary Computing Algorithms: Practical Guidelines and a Critical Review , 2020, Swarm Evol. Comput..

[40]  Tansel Dökeroglu,et al.  A survey on new generation metaheuristic algorithms , 2019, Comput. Ind. Eng..

[41]  Hossam Faris,et al.  Harris hawks optimization: Algorithm and applications , 2019, Future Gener. Comput. Syst..

[42]  Shangce Gao,et al.  A hierarchical gravitational search algorithm with an effective gravitational constant , 2019, Swarm Evol. Comput..

[43]  Jiujun Cheng,et al.  Dendritic Neuron Model With Effective Learning Algorithms for Classification, Approximation, and Prediction , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[44]  Felix T. S. Chan,et al.  Review on meta-heuristics approaches for airside operation research , 2018, Appl. Soft Comput..

[45]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[46]  Yiannis Demiris,et al.  Quality and Diversity Optimization: A Unifying Modular Framework , 2017, IEEE Transactions on Evolutionary Computation.

[47]  Jun Zhang,et al.  Genetic Learning Particle Swarm Optimization , 2016, IEEE Transactions on Cybernetics.

[48]  Jiujun Cheng,et al.  Ant colony optimization with clustering for solving the dynamic location routing problem , 2016, Appl. Math. Comput..

[49]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[50]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[51]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[52]  Yuehua Huang,et al.  A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem , 2015 .

[53]  A. E. Eiben,et al.  From evolutionary computation to the evolution of things , 2015, Nature.

[54]  K. Williams,et al.  Applications and Trends , 2015 .

[55]  Zili Zhang,et al.  An Ant Colony System Based on the Physarum Network , 2013, ICSI.

[56]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[57]  Muhammad Khurram Khan,et al.  An effective memetic differential evolution algorithm based on chaotic local search , 2011, Inf. Sci..

[58]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[59]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[60]  A. Tero,et al.  Rules for Biologically Inspired Adaptive Network Design , 2010, Science.

[61]  Blayne E. Mayfield,et al.  Slime Mold as a model for numerical optimization , 2008, 2008 IEEE Swarm Intelligence Symposium.

[62]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[63]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[64]  Michael Dourson,et al.  Framework and Case Studies , 2002 .

[65]  T. Nakagaki,et al.  Intelligence: Maze-solving by an amoeboid organism , 2000, Nature.

[66]  G. Theraulaz,et al.  Inspiration for optimization from social insect behaviour , 2000, Nature.

[67]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[68]  C. Yue,et al.  A Correlation-Guided Layered Prediction Approach for Evolutionary Dynamic Multiobjective Optimization , 2023, IEEE Transactions on Evolutionary Computation.

[69]  Shangce Gao,et al.  A population diversity-controlled differential evolution for parameter estimation of solar photovoltaic models , 2022, Sustainable Energy Technologies and Assessments.

[70]  Yulei Wu,et al.  A Comprehensive Survey , 2020, Accountability and Privacy in Network Security.

[71]  A Kamal Prakash,et al.  Artificial Bee Colony (ABC) algorithm , 2013 .

[72]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .