Estimation of high-order moment-independent importance measures for Shapley value analysis
暂无分享,去创建一个
[1] E. Borgonovo. Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches , 2006, Risk analysis : an official publication of the Society for Risk Analysis.
[2] F. Durante. Construction of non-exchangeable bivariate distribution functions , 2009 .
[3] Nils-Bastian Heidenreich,et al. Bandwidth Selection Methods for Kernel Density Estimation - A Review of Performance , 2010 .
[4] Zhenzhou Lu,et al. Monte Carlo simulation for moment-independent sensitivity analysis , 2013, Reliab. Eng. Syst. Saf..
[5] Alexander J. McNeil,et al. Quantitative Risk Management: Concepts, Techniques and Tools Revised edition , 2015 .
[6] J. Mielniczuk,et al. Estimating the density of a copula function , 1990 .
[7] Art B. Owen,et al. Better estimation of small sobol' sensitivity indices , 2012, TOMC.
[8] Stéphane Girard,et al. A class of multivariate copulas based on products of bivariate copulas , 2015, J. Multivar. Anal..
[9] Jérôme Morio,et al. A nonparametric importance sampling estimator for moment independent importance measures , 2019, Reliab. Eng. Syst. Saf..
[10] H. Joe. Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .
[11] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[12] G. Venter. TAILS OF COPULAS , 2013 .
[13] Art B. Owen,et al. Sobol' Indices and Shapley Value , 2014, SIAM/ASA J. Uncertain. Quantification.
[14] Gerhart I. Schuëller,et al. Time Variant Reliability Analysis Utilizing Response Surface Approach , 1989 .
[15] Qiao Liu,et al. A new computational method of a moment-independent uncertainty importance measure , 2009, Reliab. Eng. Syst. Saf..
[16] Claudia Czado,et al. Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..
[17] Emanuele Borgonovo,et al. A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..
[18] Jean-David Fermanian,et al. Goodness-of-fit tests for copulas , 2005 .
[19] F. Gamboa,et al. Statistical inference for Sobol pick-freeze Monte Carlo method , 2013, 1303.6447.
[20] Claudia Czado. Recent Developments in Vine Copula Based Modeling , 2019 .
[21] Nicolas Gayton,et al. AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models , 2018, Structural Safety.
[22] Barry L. Nelson,et al. Shapley Effects for Global Sensitivity Analysis: Theory and Computation , 2016, SIAM/ASA J. Uncertain. Quantification.
[23] E. E. Myshetskaya,et al. Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..
[24] L. Shapley. A Value for n-person Games , 1988 .
[25] Nils-Bastian Heidenreich,et al. Bandwidth selection for kernel density estimation: a review of fully automatic selectors , 2013, AStA Advances in Statistical Analysis.
[26] Zhenzhou Lu,et al. A fast computational method for moment-independent uncertainty importance measure , 2014, Comput. Phys. Commun..
[27] Emanuele Borgonovo,et al. Copula theory and probabilistic sensitivity analysis: Is there a connection? , 2019, Eur. J. Oper. Res..
[28] Nicolas Gayton,et al. Nonparametric Importance Sampling Techniques for Sensitivity Analysis and Reliability Assessment of a Launcher Stage Fallout , 2019, Springer Optimization and Its Applications.
[29] Mathieu Ribatet,et al. Extreme value copulas and max-stable processes , 2013 .
[30] B. Rémillard,et al. Goodness-of-fit tests for copulas: A review and a power study , 2006 .
[31] Fabian Spanhel,et al. Simplified vine copula models: Approximations based on the simplifying assumption , 2015, Electronic Journal of Statistics.
[32] L. Shampine. Vectorized adaptive quadrature in MATLAB , 2008 .
[33] T. J. Page. Multivariate Statistics: A Vector Space Approach , 1984 .
[34] Alexander J. McNeil,et al. Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.
[35] S. Kotz,et al. The Meta-elliptical Distributions with Given Marginals , 2002 .
[36] K. S. Tan,et al. Vine copula models with GLM and sparsity , 2017 .
[37] W. V. Harper,et al. Sensitivity/uncertainty analysis of a borehole scenario comparing Latin Hypercube Sampling and deterministic sensitivity approaches , 1983 .
[38] A. Bowman,et al. Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .
[39] Yarema Okhrin,et al. Properties of hierarchical Archimedean copulas , 2013 .
[40] Eric Bouyé,et al. Copulas for Finance - A Reading Guide and Some Applications , 2000 .
[41] T. J. Mitchell,et al. Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .
[42] Yarema Okhrin,et al. On the structure and estimation of hierarchical Archimedean copulas , 2013 .
[43] Markus Junker,et al. Estimating the tail-dependence coefficient: Properties and pitfalls , 2005 .
[44] A. Kiureghian,et al. STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .
[45] B. Iooss,et al. A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.
[46] Thibault Vatter,et al. Generalized Additive Models for Pair-Copula Constructions , 2016, Journal of Computational and Graphical Statistics.
[47] Emanuele Borgonovo,et al. Copula-based sensitivity measures of computer experiments , 2015 .
[48] Zhenzhou Lu,et al. Moment‐Independent Sensitivity Analysis Using Copula , 2014, Risk analysis : an official publication of the Society for Risk Analysis.
[49] U. Schepsmeier. A goodness-of-fit test for regular vine copula models , 2013, 1306.0818.
[50] Kjersti Aas,et al. On the simplified pair-copula construction - Simply useful or too simplistic? , 2010, J. Multivar. Anal..
[51] Jonathan A. Tawn,et al. Bivariate extreme value theory: Models and estimation , 1988 .
[52] Olivier Scaillet,et al. The estimation of copulas : theory and practice , 2007 .
[53] Art B. Owen,et al. On Shapley Value for Measuring Importance of Dependent Inputs , 2016, SIAM/ASA J. Uncertain. Quantification.
[54] B. A. Worley. Deterministic uncertainty analysis , 1987 .
[55] Emanuele Borgonovo,et al. Global sensitivity measures from given data , 2013, Eur. J. Oper. Res..
[56] S. Tarantola,et al. Moment Independent Importance Measures: New Results and Analytical Test Cases , 2011, Risk analysis : an official publication of the Society for Risk Analysis.
[57] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[58] Jérôme Morio,et al. ESTIMATION OF MOMENT INDEPENDENT IMPORTANCE MEASURES USING A COPULA AND MAXIMUM ENTROPY FRAMEWORK , 2018, 2018 Winter Simulation Conference (WSC).
[59] Saralees Nadarajah,et al. A Compendium of Copulas , 2018 .
[60] Claudia Czado,et al. Simplified pair copula constructions - Limitations and extensions , 2013, J. Multivar. Anal..
[61] Roger M. Cooke,et al. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.
[62] Christian Schellhase,et al. Estimating non-simplified vine copulas using penalized splines , 2016, Statistics and Computing.
[63] Zhenzhou Lu,et al. A vine copula–based method for analyzing the moment-independent importance measure of the multivariate output , 2018, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability.
[64] Song-xi Chen,et al. Beta kernel estimators for density functions , 1999 .
[65] T. Bedford,et al. Vines: A new graphical model for dependent random variables , 2002 .
[66] Claudia Czado,et al. Nonparametric estimation of simplified vine copula models: comparison of methods , 2017, 1701.00845.
[67] Claudia Czado,et al. Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas , 2015, J. Multivar. Anal..
[68] Emanuele Borgonovo,et al. Sampling strategies in density-based sensitivity analysis , 2012, Environ. Model. Softw..
[69] Zhenzhou Lu,et al. A new method for evaluating Borgonovo moment-independent importance measure with its application in an aircraft structure , 2014, Reliab. Eng. Syst. Saf..
[70] Roger M. Cooke,et al. Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .
[71] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[72] Fabrizio Durante,et al. Copula Theory and Its Applications , 2010 .
[73] Nicolas Gayton,et al. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .
[74] C. Genest,et al. Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .
[75] Nicolas Gayton,et al. A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models , 2013, Reliab. Eng. Syst. Saf..
[76] Eckhard Liebscher,et al. Construction of asymmetric multivariate copulas , 2008 .
[77] C. Genest,et al. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .
[78] S. Satchell,et al. THE BERNSTEIN COPULA AND ITS APPLICATIONS TO MODELING AND APPROXIMATIONS OF MULTIVARIATE DISTRIBUTIONS , 2004, Econometric Theory.
[79] Emanuele Borgonovo,et al. Sensitivity analysis: A review of recent advances , 2016, Eur. J. Oper. Res..