Finite difference/spectral approximations for the fractional cable equation

Fujian NSF [S0750017]; National NSF of China [10531080]; Ministry of Education of China; 973 High Performance Scientific Computation Research Program [2005CB321703]

[1]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[2]  T. J. Sejnowski,et al.  An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons , 1989, Biological Cybernetics.

[3]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[4]  K. Jacobson,et al.  Structural mosaicism on the submicron scale in the plasma membrane. , 1998, Biophysical journal.

[5]  Eric R. Weeks Experimental studies of anomalous diffusion, blocking phenomena, and two-dimensional turbulence , 1997 .

[6]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[7]  Akihiro Kusumi,et al.  Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. , 2005, Annual review of biophysics and biomolecular structure.

[8]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[9]  W. Rall Core Conductor Theory and Cable Properties of Neurons , 2011 .

[10]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[11]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[12]  P. Hänggi,et al.  Current and universal scaling in anomalous transport. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  C. Nicholson Electric current flow in excitable cells J. J. B. Jack, D. Noble &R. W. Tsien Clarendon Press, Oxford (1975). 502 pp., £18.00 , 1976, Neuroscience.

[14]  Melvin Lax,et al.  Stochastic Transport in a Disordered Solid. II. Impurity Conduction , 1973 .

[15]  Igor M. Sokolov,et al.  ANOMALOUS TRANSPORT IN EXTERNAL FIELDS : CONTINUOUS TIME RANDOM WALKS AND FRACTIONAL DIFFUSION EQUATIONS EXTENDED , 1998 .

[16]  Weis,et al.  NMR flow velocity mapping in random percolation model objects: Evidence for a power-law dependence of the volume-averaged velocity on the probe-volume radius. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[18]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  W. Webb,et al.  Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. , 1999, Biophysical journal.

[20]  Kwok Sau Fa,et al.  Anomalous diffusion: Fractional Fokker–Planck equation and its solutions , 2003 .

[21]  D. Noble,et al.  Nerve and muscle excitation D. Junge. Sinauer associates, Sunderland, Massachusetts and W. H. Freeman, Reading (1976). 143 pp., paper: £4.30 , 1977, Neuroscience.

[22]  W. Webb,et al.  Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. , 1996, Biophysical journal.

[23]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[24]  Idan Segev,et al.  Compartmental models of complex neurons , 1989 .

[25]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[26]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[27]  Maggs,et al.  Subdiffusion and Anomalous Local Viscoelasticity in Actin Networks. , 1996, Physical review letters.

[28]  W. Webb,et al.  Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. , 1994, Biophysical journal.

[29]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[30]  C. Bernardi,et al.  Approximations spectrales de problèmes aux limites elliptiques , 2003 .

[31]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[32]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[33]  W. Wyss The fractional diffusion equation , 1986 .

[34]  Gabriele Müller,et al.  Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. , 2003, Biophysical journal.

[35]  Brian Berkowitz,et al.  Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport , 2003 .

[36]  Melvin Lax,et al.  Stochastic Transport in a Disordered Solid. I. Theory , 1973 .

[37]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .