On the micromechanics of deep material networks

Abstract We investigate deep material networks (DMNs), recently introduced by Liu-Wu-Koishi [Comput. Method Appl. M., vol. 345, pp. 1138–1168, 2019], from the viewpoint of classical micromechanics at small strains. We aim to establish the basic micromechanical principles of deep material networks, shed light on the characteristics of the building blocks and introduce a simple, robust and fast solution technique for inelastic deep material networks. In their original formulation, DMNs are solely trained by linear elastic data, but applied to nonlinear and inelastic problems with astonishing accuracy. We clarify this phenomenon theoretically by showing that, to first order in the strain rate, the effective inelastic behavior of composite materials is determined by linear elastic localization. Our argumentation applies to arbitrary microstructures comprising nonlinear generalized standard materials at small strains. The main technical tool is a Volterra series approximation of the stress of a generalized standard material, which we adapt from nonlinear dynamical systems theory. Next, we establish that deep material networks inherit thermodynamical consistency and stress-strain monotonicity from their phases. This property roots in the definition of the DMN as a tree of hierarchical laminates and contrasts with other applications of neural networks to the approximation of material laws, where consistency and monotonicity typically cannot be guaranteed far away from the training set. Last but not least, we introduce rotation-free DMNs with arbitrary directions of lamination and exploit a novel formulation, uniting the implementation of DMNs of arbitrary tree topology and multi-phase laminates, and apply our insights to microstructures of industrial complexity.

[1]  M. Schneider The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics , 2017 .

[2]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[3]  Javier Segurado,et al.  On the accuracy of spectral solvers for micromechanics based fatigue modeling , 2018, Computational Mechanics.

[4]  G. Srinivasu,et al.  Artificial Neural Network Approach for Prediction of Titanium Alloy Stress-Strain Curve , 2012 .

[5]  Pierre Suquet,et al.  Extension of the Nonuniform Transformation Field Analysis to linear viscoelastic composites in the presence of aging and swelling , 2014 .

[6]  Frank Hutter,et al.  SGDR: Stochastic Gradient Descent with Warm Restarts , 2016, ICLR.

[7]  Felix Fritzen,et al.  GPU accelerated computational homogenization based on a variational approach in a reduced basis framework , 2014 .

[8]  Fredrik Larsson,et al.  On-the-Fly Adaptivity for Nonlinear Twoscale Simulations Using Artificial Neural Networks and Reduced Order Modeling , 2019, Front. Mater..

[9]  J. Mandel Generalisation de la theorie de plasticite de W. T. Koiter , 1965 .

[10]  M. Schneider On the mathematical foundations of the self-consistent clustering analysis for non-linear materials at small strains , 2019, Computer Methods in Applied Mechanics and Engineering.

[11]  J. Michel,et al.  A model-reduction approach to the micromechanical analysis of polycrystalline materials , 2016 .

[12]  Orion L. Kafka,et al.  Data-Driven Self-consistent Clustering Analysis of Heterogeneous Materials with Crystal Plasticity , 2018 .

[13]  M. Schneider On the Barzilai‐Borwein basic scheme in FFT‐based computational homogenization , 2019, International Journal for Numerical Methods in Engineering.

[14]  Matti Schneider,et al.  Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts , 2018 .

[15]  J. Chaboche,et al.  Multiscale analysis of SiC/Ti composites , 2004 .

[16]  R. E. Miles On random rotations in R3 , 1965 .

[17]  S. Marfia Micro–macro analysis of shape memory alloy composites , 2005 .

[18]  Timon Rabczuk,et al.  A surrogate model for computational homogenization of elastostatics at finite strain using the HDMR-based neural network approximator , 2019, ArXiv.

[19]  Mark A Fleming,et al.  Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials , 2018 .

[20]  Thomas Böhlke,et al.  Reduced basis homogenization of viscoelastic composites , 2013 .

[21]  J. Michel,et al.  Effective potentials in nonlinear polycrystals and quadrature formulae , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  M. Diehl,et al.  A spectral method solution to crystal elasto-viscoplasticity at finite strains , 2013 .

[23]  K. Chandrashekhara,et al.  Neural Network Based Constitutive Model for Rubber Material , 2004 .

[24]  Jan Novák,et al.  Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients , 2010, J. Comput. Phys..

[25]  A. Philipse,et al.  Random packings of spheres and spherocylinders simulated by mechanical contraction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Graeme W. Milton,et al.  A fast numerical scheme for computing the response of composites using grid refinement , 1999 .

[27]  Zeliang Liu,et al.  Exploring the 3D architectures of deep material network in data-driven multiscale mechanics , 2019, Journal of the Mechanics and Physics of Solids.

[28]  I. Sandberg Series expansions for nonlinear systems , 1983 .

[29]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[30]  I. W. Sandberg,et al.  Expansions for nonlinear systems , 1982, The Bell System Technical Journal.

[31]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[32]  Pierre Suquet,et al.  Computational analysis of nonlinear composite structures using the Nonuniform Transformation Field Analysis , 2004 .

[33]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[34]  Laurent Adam,et al.  A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites , 2011 .

[35]  M. Schneider,et al.  On Quasi‐Newton methods in fast Fourier transform‐based micromechanics , 2019, International Journal for Numerical Methods in Engineering.

[36]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[37]  Miguel A. Bessa,et al.  Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials , 2016 .

[38]  G. Milton The Theory of Composites , 2002 .

[39]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .

[40]  Xuejun Zhou,et al.  Least Squares Support Vector Machine for Constitutive Modeling of Clay , 2015 .

[41]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[42]  H. Moulinec,et al.  A fast numerical method for computing the linear and nonlinear mechanical properties of composites , 1994 .

[43]  R. Müller,et al.  A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms , 2014 .

[44]  G. J. Dvorak,et al.  Implementation of the transformation field analysis for inelastic composite materials , 1994 .

[45]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[46]  George J. Dvorak,et al.  The modeling of inelastic composite materials with the transformation field analysis , 1994 .

[47]  Marc G. D. Geers,et al.  A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials , 2017, J. Comput. Phys..

[48]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[49]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[50]  Jean-Louis Chaboche,et al.  Towards a micromechanics based inelastic and damage modeling of composites , 2001 .

[51]  Sanjiv Kumar,et al.  On the Convergence of Adam and Beyond , 2018 .

[52]  M. Stone The Generalized Weierstrass Approximation Theorem , 1948 .

[53]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[54]  M. Schneider,et al.  The composite voxel technique for inelastic problems , 2017 .

[55]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[56]  Zeliang Liu,et al.  A Deep Material Network for Multiscale Topology Learning and Accelerated Nonlinear Modeling of Heterogeneous Materials , 2018, Computer Methods in Applied Mechanics and Engineering.

[57]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[58]  Matti Schneider,et al.  An efficient solution scheme for small-strain crystal-elasto-viscoplasticity in a dual framework , 2020 .

[59]  B. A. Le,et al.  Computational homogenization of nonlinear elastic materials using neural networks , 2015 .

[60]  T. Carleman Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires , 1932 .

[61]  Javier Segurado,et al.  On the accuracy of mean-field approaches to simulate the plastic deformation of composites , 2002 .

[62]  Joos Vandewalle,et al.  Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications , 2012 .

[63]  Pierre Suquet,et al.  On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles , 2007 .

[64]  I. Sandberg Volterra expansions for time-varying nonlinear systems , 1982, The Bell System Technical Journal.

[65]  Zvi Hashin,et al.  Complex moduli of viscoelastic composites—I. General theory and application to particulate composites , 1970 .

[66]  S. Reese,et al.  Model order reduction of nonlinear homogenization problems using a Hashin–Shtrikman type finite element method , 2018 .

[67]  Sonia Marfia,et al.  Analysis of SMA composite laminates using a multiscale modelling technique , 2007 .

[68]  Jean-Louis Chaboche,et al.  On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites , 2005 .

[69]  A. Isidori Nonlinear Control Systems , 1985 .

[70]  Hongbo Zhao,et al.  Simulating the Stress-Strain Relationship of Geomaterials by Support Vector Machine , 2014 .

[71]  Y. Benveniste,et al.  On transformation strains and uniform fields in multiphase elastic media , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[72]  Alexander Mielke,et al.  A Mathematical Framework for Generalized Standard Materials in the Rate-Independent Case , 2006 .

[73]  Matti Schneider,et al.  Use of composite voxels in FFT-based homogenization , 2015 .

[74]  S. Shtrikman,et al.  Note on a variational approach to the theory of composite elastic materials , 1961 .

[75]  Felix Fritzen,et al.  Reduced basis hybrid computational homogenization based on a mixed incremental formulation , 2013 .

[76]  E. Sacco,et al.  Micromechanics and Homogenization of SMA-Wire-Reinforced Materials , 2005 .

[77]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[78]  M. N. Jadid,et al.  Prediction of Stress-strain Relationships for Reinforced Concrete Sections by Implementing Neural Network Techniques , 1997 .

[79]  T. Böhlke,et al.  Nonlinear homogenization using the nonuniform transformation field analysis , 2011 .

[80]  Pierre Suquet,et al.  A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations , 2016 .

[81]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .