Dynamic, adaptive sampling during nanopore sequencing using Bayesian experimental design

[1]  R. Kirkegaard,et al.  Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing , 2022, Nature Methods.

[2]  Brent S. Pedersen,et al.  A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar , 2022, PLoS Comput. Biol..

[3]  David C. Jones,et al.  Rapid-CNS2: rapid comprehensive adaptive nanopore-sequencing of CNS tumors, a proof-of-concept study , 2022, Acta Neuropathologica.

[4]  B. Renard,et al.  ReadBouncer: precise and scalable adaptive sampling for nanopore sequencing , 2022, bioRxiv.

[5]  R. Kirkegaard,et al.  Oxford Nanopore R10.4 long-read sequencing enables near-perfect bacterial genomes from pure cultures and metagenomes without short-read or reference polishing , 2021, bioRxiv.

[6]  C. Dekker,et al.  Multiple rereads of single proteins at single–amino acid resolution using nanopores , 2021, Science.

[7]  D. Capper,et al.  Intraoperative DNA methylation classification of brain tumors impacts neurosurgical strategy , 2021, Neuro-oncology advances.

[8]  Ira W. Deveson,et al.  Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing , 2021, medRxiv.

[9]  E. Schleußner,et al.  Evaluation of microbiome enrichment and host DNA depletion in human vaginal samples using Oxford Nanopore’s adaptive sequencing , 2021, Scientific Reports.

[10]  Z. Iqbal,et al.  Pandora: nucleotide-resolution bacterial pan-genomics with reference graphs , 2021, Genome Biology.

[11]  Jordan M. Eizenga,et al.  Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads , 2021, Nature Methods.

[12]  William H. Majoros,et al.  Targeted long-read sequencing identifies missing disease-causing variation. , 2021, American journal of human genetics.

[13]  S. Wan,et al.  Cancer Biomarkers Discovery of Methylation Modification With Direct High-Throughput Nanopore Sequencing , 2021, Frontiers in Genetics.

[14]  Brent S. Pedersen,et al.  Vcflib and tools for processing the VCF variant call format , 2021, bioRxiv.

[15]  R. Leggett,et al.  Nanopore adaptive sampling: a tool for enrichment of low abundance species in metagenomic samples , 2021, Genome Biology.

[16]  C. Mason,et al.  DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation , 2021, Genome Biology.

[17]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[18]  William T. Harvey,et al.  Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads , 2020, Nature Biotechnology.

[19]  Alexander Payne,et al.  Readfish enables targeted nanopore sequencing of gigabase-sized genomes , 2020, Nature Biotechnology.

[20]  Karynne E. Patterson,et al.  Targeted long-read sequencing resolves complex structural variants and identifies missing disease-causing variants , 2020, bioRxiv.

[21]  D. Botstein,et al.  Fully Phased Sequence of a Diploid Human Genome Determined de Novo from the DNA of a Single Individual , 2020, G3.

[22]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[23]  M. Schatz,et al.  Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED , 2020, Nature Biotechnology.

[24]  Anton J. Enright,et al.  RNA modifications detection by comparative Nanopore direct RNA sequencing , 2019, Nature Communications.

[25]  Geoffrey L. Winsor,et al.  CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database , 2019, Nucleic Acids Res..

[26]  T. Richards,et al.  The Ecology and Evolution of Pangenomes , 2019, Current Biology.

[27]  J. Quick The 'Three Peaks' faecal DNA extraction method for long-read sequencing v1 (protocols.io.584g9yw) , 2019, protocols.io.

[28]  M. Kinoshita,et al.  Medaka , 2019 .

[29]  Sergey Koren,et al.  Telomere-to-telomere assembly of a complete human X chromosome , 2019, bioRxiv.

[30]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[31]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[32]  Heike Sichtig,et al.  Single-molecule sequencing detection of N6-methyladenine in microbial reference materials , 2019, Nature Communications.

[33]  J. Simpson,et al.  Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing , 2018, bioRxiv.

[34]  Alexander Payne,et al.  BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files , 2018, Bioinform..

[35]  Lennart Opitz,et al.  Long fragments achieve lower base quality in Illumina paired-end sequencing , 2018, Scientific Reports.

[36]  Andrey S. Glotov,et al.  Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage , 2018, Scientific Reports.

[37]  L. Boykin,et al.  Real time portable genome sequencing for global food security , 2018, bioRxiv.

[38]  Raga Krishnakumar,et al.  Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias , 2018, Scientific Reports.

[39]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[40]  Brent S. Pedersen,et al.  Nanopore sequencing and assembly of a human genome with ultra-long reads , 2017, Nature Biotechnology.

[41]  Winston Timp,et al.  Detecting DNA cytosine methylation using nanopore sequencing , 2017, Nature Methods.

[42]  Daniel R. Garalde,et al.  Highly parallel direct RNA sequencing on an array of nanopores , 2016, Nature Methods.

[43]  D. Branton,et al.  Three decades of nanopore sequencing , 2016, Nature Biotechnology.

[44]  Matthew Loose,et al.  Real-time selective sequencing using nanopore technology , 2016, Nature Methods.

[45]  David A. Matthews,et al.  Real-time, portable genome sequencing for Ebola surveillance , 2016, Nature.

[46]  Jörg Peplies,et al.  JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison , 2015, Bioinform..

[47]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[48]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[49]  John G. Cleary,et al.  Comparing Variant Call Files for Performance Benchmarking of Next-Generation Sequencing Variant Calling Pipelines , 2015, bioRxiv.

[50]  Sara Goodwin,et al.  Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome , 2015, bioRxiv.

[51]  Egon A Ozer,et al.  Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt , 2014, BMC Genomics.

[52]  N. Lennon,et al.  Characterizing and measuring bias in sequence data , 2013, Genome Biology.

[53]  Alison S. Waller,et al.  Genomic variation landscape of the human gut microbiome , 2012, Nature.

[54]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[55]  Edwin Cuppen,et al.  Accurate SNP and mutation detection by targeted custom microarray-based genomic enrichment of short-fragment sequencing libraries , 2010, Nucleic acids research.

[56]  Marc Gershow,et al.  Recapturing and trapping single molecules with a solid-state nanopore. , 2007, Nature nanotechnology.

[57]  H. Tettelin,et al.  The microbial pan-genome. , 2005, Current opinion in genetics & development.

[58]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[59]  A. Bird CpG-rich islands and the function of DNA methylation , 1986, Nature.

[60]  M. Ehrlich,et al.  Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. , 1982, Nucleic acids research.

[61]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[62]  N. Reid,et al.  AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .

[63]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[64]  Sergio J. Rey,et al.  PySAL: A Python Library of Spatial Analytical Methods , 2010 .

[65]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .