A Projector-Based Approach to Quantifying Total and Excess Uncertainties for Sketched Linear Regression

Linear regression is a classic method of data analysis. In recent years, sketching -- a method of dimension reduction using random sampling, random projections, or both -- has gained popularity as an effective computational approximation when the number of observations greatly exceeds the number of variables. In this paper, we address the following question: How does sketching affect the statistical properties of the solution and key quantities derived from it? To answer this question, we present a projector-based approach to sketched linear regression that is exact and that requires minimal assumptions on the sketching matrix. Therefore, downstream analyses hold exactly and generally for all sketching schemes. Additionally, a projector-based approach enables derivation of key quantities from classic linear regression that account for the combined model- and algorithm-induced uncertainties. We demonstrate the usefulness of a projector-based approach in quantifying and enabling insight on excess uncertainties and bias-variance decompositions for sketched linear regression. Finally, we demonstrate how the insights from our projector-based analyses can be used to produce practical sketching diagnostics to aid the design of judicious sketching schemes.

[1]  Alevs vCern'y,et al.  Characterization of the oblique projector U(VU)†V with application to constrained least squares , 2008, 0809.4500.

[2]  S. Muthukrishnan,et al.  Faster least squares approximation , 2007, Numerische Mathematik.

[3]  R. Welsch,et al.  The Hat Matrix in Regression and ANOVA , 1978 .

[4]  Roy E. Welsch,et al.  Efficient Computing of Regression Diagnostics , 1981 .

[5]  Ping Ma,et al.  A statistical perspective on algorithmic leveraging , 2013, J. Mach. Learn. Res..

[6]  Zlatko Drmac,et al.  The Discrete Empirical Interpolation Method: Canonical Structure and Formulation in Weighted Inner Product Spaces , 2017, SIAM J. Matrix Anal. Appl..

[7]  Dean P. Foster,et al.  Faster Ridge Regression via the Subsampled Randomized Hadamard Transform , 2013, NIPS.

[8]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[9]  Nicholas J. Higham,et al.  Accuracy and stability of numerical algorithms, Second Edition , 2002 .

[10]  Michael W. Mahoney,et al.  A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares , 2014, J. Mach. Learn. Res..

[11]  Sivan Toledo,et al.  Blendenpik: Supercharging LAPACK's Least-Squares Solver , 2010, SIAM J. Sci. Comput..

[12]  Roummel F. Marcia,et al.  Computationally Efficient Decompositions of Oblique Projection Matrices , 2020, SIAM J. Matrix Anal. Appl..

[13]  Michael A. Saunders,et al.  LSRN: A Parallel Iterative Solver for Strongly Over- or Underdetermined Systems , 2011, SIAM J. Sci. Comput..

[14]  Shusen Wang,et al.  Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging , 2017, ICML.

[15]  Michael W. Mahoney,et al.  Asymptotic Analysis of Sampling Estimators for Randomized Numerical Linear Algebra Algorithms , 2020, AISTATS.

[16]  Rong Zhu,et al.  Optimal Subsampling for Large Sample Logistic Regression , 2017, Journal of the American Statistical Association.

[17]  Ilse C. F. Ipsen Relative perturbation results for matrix eigenvalues and singular values , 1998, Acta Numerica.

[18]  Per Christian Hansen Oblique projections and standard-form transformations for discrete inverse problems , 2013, Numer. Linear Algebra Appl..

[19]  Christos Boutsidis,et al.  Random Projections for the Nonnegative Least-Squares Problem , 2008, ArXiv.

[20]  Nicolai Meinshausen,et al.  Random Projections for Large-Scale Regression , 2017, 1701.05325.

[21]  Larry A. Wasserman,et al.  Compressed Regression , 2007, NIPS.

[22]  S. Chatterjee,et al.  Influential Observations, High Leverage Points, and Outliers in Linear Regression , 1986 .

[23]  Shusen Wang,et al.  Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap , 2018, ICML.

[24]  V. Rokhlin,et al.  A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.

[25]  G. Stewart Collinearity and Least Squares Regression , 1987 .

[26]  G. W. Stewart,et al.  On the Numerical Analysis of Oblique Projectors , 2011, SIAM J. Matrix Anal. Appl..

[27]  Ata Kabán New Bounds on Compressive Linear Least Squares Regression , 2014, AISTATS.

[28]  David P. Woodruff,et al.  Fast approximation of matrix coherence and statistical leverage , 2011, ICML.

[29]  Ilse C. F. Ipsen,et al.  The Effect of Coherence on Sampling from Matrices with Orthonormal Columns, and Preconditioned Least Squares Problems , 2014, SIAM J. Matrix Anal. Appl..

[30]  G. Stewart On scaled projections and pseudoinverses , 1989 .

[31]  Rémi Munos,et al.  Compressed Least-Squares Regression , 2009, NIPS.

[32]  Ilse C. F. Ipsen An overview of relative sin T theorems for invariant subspaces of complex matrices , 2000 .