Long time no see: the probability of reusing tags as a function of frequency and recency

In this paper, we introduce a tag recommendation algorithm that mimics the way humans draw on items in their long-term memory. This approach uses the frequency and recency of previous tag assignments to estimate the probability of reusing a particular tag. Using three real-world folksonomies gathered from bookmarks in BibSonomy, CiteULike and Flickr, we show how incorporating a time-dependent component outperforms conventional "most popular tags" approaches and another existing and very effective but less theory-driven, time-dependent recommendation mechanism. By combining our approach with a simple resource-specific frequency analysis, our algorithm outperforms other well-established algorithms, such as FolkRank, Pairwise Interaction Tensor Factorization and Collaborative Filtering. We conclude that our approach provides an accurate and computationally efficient model of a user's temporal tagging behavior. We demonstrate how effective principles of information retrieval can be designed and implemented if human memory processes are taken into account.

[1]  Ulrike Cress,et al.  Learning by foraging: The impact of individual knowledge and social tags on web navigation processes , 2012, Comput. Hum. Behav..

[2]  Ming Zhang,et al.  Integrating Temporal Usage Pattern into Personalized Tag Prediction , 2012, APWeb.

[3]  John R Anderson,et al.  An integrated theory of the mind. , 2004, Psychological review.

[4]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[5]  Dominik Kowald,et al.  Recommending tags with a model of human categorization , 2013, CIKM.

[6]  Sally Hamouda,et al.  PUT-Tag: personalized user-centric tag recommendation for social bookmarking systems , 2011, Social Network Analysis and Mining.

[7]  Brian D. Davison,et al.  Temporal Dynamics of User Interests in Tagging Systems , 2011, AAAI.

[8]  Andreas Hotho,et al.  Social Tagging Recommender Systems , 2011, Recommender Systems Handbook.

[9]  Marek Lipczak,et al.  HYBRID TAG RECOMMENDATION IN COLLABORATIVE TAGGING SYSTEMS , 2012 .

[10]  Lars Schmidt-Thieme,et al.  Pairwise interaction tensor factorization for personalized tag recommendation , 2010, WSDM '10.

[11]  Luc Steels,et al.  Semiotic Dynamics for Embodied Agents , 2006, IEEE Intelligent Systems.

[12]  Vittorio Loreto,et al.  Collaborative Tagging and Semiotic Dynamics , 2006, ArXiv.

[13]  Andreas Hotho,et al.  Tag Recommendations in Folksonomies , 2007, LWA.

[14]  John R. Anderson,et al.  Reflections of the Environment in Memory Form of the Memory Functions , 2022 .

[15]  Stephan Doerfel,et al.  An analysis of tag-recommender evaluation procedures , 2013, RecSys.

[16]  Mor Naaman,et al.  HT06, tagging paper, taxonomy, Flickr, academic article, to read , 2006, HYPERTEXT '06.

[17]  Dominik Benz,et al.  Stop thinking, start tagging: tag semantics emerge from collaborative verbosity , 2010, WWW '10.

[18]  Lars Schmidt-Thieme,et al.  Collaborative Tag Recommendations , 2007, GfKl.

[19]  Abdulmotaleb El-Saddik,et al.  Folksonomy link prediction based on a tripartite graph for tag recommendation , 2012, Journal of Intelligent Information Systems.

[20]  Valentin Robu,et al.  The complex dynamics of collaborative tagging , 2007, WWW '07.

[21]  Iván Cantador,et al.  Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols , 2013, User Modeling and User-Adapted Interaction.

[22]  Mehrbakhsh Nilashi,et al.  Collaborative filtering recommender systems , 2013 .

[23]  Peter M. Todd,et al.  Can simple social copying heuristics explain tag popularity in a collaborative tagging system? , 2013, WebSci.

[24]  Brian D. Davison,et al.  Exploiting session-like behaviors in tag prediction , 2011, WWW.

[25]  Christian Bauckhage,et al.  I tag, you tag: translating tags for advanced user models , 2010, WSDM '10.

[26]  Andreas Hotho,et al.  Tag recommendations in social bookmarking systems , 2008, AI Commun..

[27]  Steffen Rendle,et al.  Factorization Machines , 2010, 2010 IEEE International Conference on Data Mining.

[28]  Vittorio Loreto,et al.  Semiotic dynamics and collaborative tagging , 2006, Proceedings of the National Academy of Sciences.

[29]  Ralf Krestel,et al.  Language Models and Topic Models for Personalizing Tag Recommendation , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[30]  Jure Leskovec,et al.  Hidden factors and hidden topics: understanding rating dimensions with review text , 2013, RecSys.

[31]  Christoph Trattner,et al.  Navigational efficiency of broad vs. narrow folksonomies , 2012, HT '12.

[32]  Steffen Staab,et al.  Measuring the influence of tag recommenders on the indexing quality in tagging systems , 2012, HT '12.

[33]  B. Mobasher,et al.  Improving FolkRank With Item-Based Collaborative Filtering , 2009 .