Enhanced performance of organic solar cells based on thiophene/phenylene co-oligomers

[1]  H. Ade,et al.  Efficient Charge Transfer and Fine‐Tuned Energy Level Alignment in a THF‐Processed Fullerene‐Free Organic Solar Cell with 11.3% Efficiency , 2017, Advanced materials.

[2]  Kwang-Hyun Park,et al.  The use of an n-type macromolecular additive as a simple yet effective tool for improving and stabilizing the performance of organic solar cells , 2016 .

[3]  Feng Gao,et al.  Fullerene‐Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability , 2016, Advanced materials.

[4]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[5]  Stephen Z. D. Cheng,et al.  High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer. , 2015, ACS applied materials & interfaces.

[6]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[7]  Yang Yang,et al.  Fullerene C70 as a p-type donor in organic photovoltaic cells , 2014 .

[8]  Trisha L. Andrew,et al.  High open-circuit voltage, high fill factor single-junction organic solar cells , 2014 .

[9]  S. Hotta,et al.  Thiophene/Phenylene Co-Oligomers as Novel Photovoltaic Materials , 2014 .

[10]  Y. Yoshida,et al.  Templating effects in molecular growth of blended films for efficient small-molecule photovoltaics. , 2014, ACS applied materials & interfaces.

[11]  A. Heeger,et al.  25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation , 2014, Advanced materials.

[12]  Yang Yang,et al.  Fullerene derivatives as electron donor for organic photovoltaic cells , 2013 .

[13]  A. Stesmans,et al.  Improved cathode buffer layer to decrease exciton recombination in organic planar heterojunction solar cells , 2013 .

[14]  C. Adachi,et al.  [2,2']Bi[naphtho[2,3-b]furanyl]: a versatile organic semiconductor with a furan-furan junction. , 2012, Chemical communications.

[15]  K. Leo,et al.  Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells , 2011 .

[16]  Yoshio Taniguchi,et al.  Sensitization of organic photovoltaic cells based on interlayer excitation energy transfer , 2010 .

[17]  D. Yan,et al.  Evolution of 2,5-Bis(4-biphenylyl)bithiophene Thin Films and Its Effect on the Weak Epitaxy Growth of ZnPc , 2010 .

[18]  D. Yan,et al.  Efficient Organic Solar Cells Using a High‐Quality Crystalline Thin Film as a Donor Layer , 2010, Advanced materials.

[19]  K. Ho,et al.  Modulation of Donor-Acceptor Interface through Thermal Treatment for Efficient Bilayer Organic Solar Cells , 2010 .

[20]  Jian Li,et al.  Efficient Organic Solar Cells Based on Planar Metallophthalocyanines , 2009 .

[21]  Barry P Rand,et al.  Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine , 2007 .

[22]  Yoshio Taniguchi,et al.  Self-waveguided photoemission and lasing of organic crystalline wires obtained by an improved expitaxial growth method. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Barry P Rand,et al.  Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. , 2006, Journal of the American Chemical Society.

[24]  H. Bock,et al.  Influence of indium tin oxide treatment using UV–ozone and argon plasma on the photovoltaic parameters of devices based on organic discotic materials , 2006 .

[25]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[26]  S. Hotta,et al.  Synthesis of thiophene/phenylene co‐oligomers. IV. 6‐ to 8‐ring molecules , 2003 .

[27]  Vladimir Dyakonov,et al.  The polymer–fullerene interpenetrating network: one route to a solar cell approach , 2002 .

[28]  Christoph J. Brabec,et al.  Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions , 2001 .

[29]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[30]  S. Hotta Synthesis of thiophene/phenylene co‐oligomers. III . thienyl‐capped oligophenylenes , 2001 .

[31]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[32]  S. Hotta,et al.  Spectroscopic Features of Thin Films of Thiophene/Phenylene Co-oligomers with Vertical Molecular Alignment , 2000 .

[33]  S. Hotta,et al.  Synthesis of thiophene/phenylene co-oligomers. II [1]. Block and alternating co-oligomers , 2000 .

[34]  S. Hotta,et al.  Synthesis of thiophene/phenylene co-oligomers. I. Phenyl-capped oligothiophenes , 2000 .

[35]  Hiroshi Fujiwara,et al.  Three‐layered organic solar cell with a photoactive interlayer of codeposited pigments , 1991 .

[36]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[37]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[38]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[39]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.