Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics
暂无分享,去创建一个
[1] Lin Zhao,et al. Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation , 2010 .
[2] G. Burton. Sobolev Spaces , 2013 .
[3] Juncheng Wei,et al. Strongly interacting bumps for the Schrödinger–Newton equations , 2009 .
[4] M. Willem. Functional analysis. Fundamentals and applications , 2013 .
[5] S. Secchi,et al. Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[6] Jean Van Schaftingen,et al. Symmetry of solutions of semilinear elliptic problems , 2008 .
[7] Marc Vuffray,et al. Stationary solutions of the Schrödinger-Newton model---an ODE approach , 2007, Differential and Integral Equations.
[8] Elliott H. Lieb. Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .
[9] P. Lions. The concentration-compactness principle in the Calculus of Variations , 1984 .
[10] M. Weinstein. Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .
[11] Jean Van Schaftingen,et al. Existence of groundstates for a class of nonlinear Choquard equations , 2012, 1212.2027.
[12] Elliott H. Lieb,et al. A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .
[13] P. Lions,et al. The Choquard equation and related questions , 1980 .
[14] Irene M. Moroz,et al. An analytical approach to the Schrödinger-Newton equations , 1999 .
[15] Alexander Yu. Solynin,et al. An approach to symmetrization via polarization , 1999 .
[16] J. K. Hunter,et al. Measure Theory , 2007 .
[17] P. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .
[18] Tobias Weth,et al. Partial symmetry of least energy nodal solutions to some variational problems , 2005 .
[19] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[20] Jean Van Schaftingen. Explicit approximation of the symmetric rearrangement by polarizations , 2009, 0902.0637.
[21] Jean Van Schaftingen,et al. Set transformations, symmetrizations and isoperimetric inequalities , 2004 .
[22] S. I. Pekar,et al. Untersuchungen über die Elektronentheorie der Kristalle , 1954 .
[23] Wenxiong Chen,et al. Classification of solutions for an integral equation , 2006 .
[24] Otared Kavian,et al. Introduction à la théorie des points critiques : et applications aux problèmes elliptiques , 1993 .
[25] S. Secchi,et al. Multiple solutions to a magnetic nonlinear Choquard equation , 2011, 1109.1386.
[26] Shmuel Agmon,et al. Bounds on exponential decay of eigenfunctions of Schrödinger operators , 1985 .
[27] M. Willem. Minimax Theorems , 1997 .
[28] G. P. Menzala,et al. On regular solutions of a nonlinear equation of Choquard's type , 1980, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[29] Irene M. Moroz,et al. Spherically symmetric solutions of the Schrodinger-Newton equations , 1998 .
[30] A. Quaas,et al. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[31] M. Riesz. L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .
[32] B. Gidas,et al. Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .
[33] Jean Van Schaftingen,et al. Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains , 2012, 1203.3154.