Porphyrins and phthalocyanines in solar photovoltaic cells

This review summarizes recent advances in the use of porphyrins, phthalocyanines, and related compounds as components of solar cells, including organic molecular solar cells, polymer cells, and dye-sensitized solar cells. The recent report of a porphyrin dye that achieves 11% power conversion efficiency in a dye-sensitized solar cell indicates that these classes of compounds can be as efficient as the more commonly used ruthenium bipyridyl derivatives.

[1]  T. Moore,et al.  Biology and technology for photochemical fuel production. , 2009, Chemical Society reviews.

[2]  Paul A. Karr,et al.  Spectral, electrochemical, and photophysical studies of a magnesium porphyrin-fullerene dyad. , 2005, Physical chemistry chemical physics : PCCP.

[3]  M. Roy,et al.  Dye sensitized solar cells (DSSCs) based on modified iron phthalocyanine nanostructured TiO2 electrode and PEDOT:PSS counter electrode , 2009 .

[4]  H. Gray,et al.  Corrole-sensitized TiO2 solar cells , 2006 .

[5]  Barry P Rand,et al.  Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine , 2007 .

[6]  Hooi-Sung Kim,et al.  Photoelectropolymerization of aniline in a dye-sensitized solar cell , 2006, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[7]  E. Durantini,et al.  Synthesis and Spectroscopic Properties of a Covalently Linked Porphyrin–Fullerene C60 Dyad , 2006 .

[8]  N. Armstrong,et al.  Titanyl phthalocyanine/C60 heterojunctions: Band-edge offsets and photovoltaic device performance , 2008 .

[9]  I. Yamazaki,et al.  Vectorial electron relay at ITO electrodes modified with self-assembled monolayers of ferrocene-porphyrin-fullerene triads and porphyrin-fullerene Dyads for molecular photovoltaic devices. , 2004, Chemistry.

[10]  J. Durrant,et al.  Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. , 2008, Journal of the American Chemical Society.

[11]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[12]  M. Grätzel,et al.  Theoretical screening of -NH2-, -OH-, -CH3-, -F-, and -SH-substituted porphyrins as sensitizer candidates for dye-sensitized solar cells. , 2010, The journal of physical chemistry. A.

[13]  Lionel R. Milgrom,et al.  The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds , 1997 .

[14]  T. Yamaguchi,et al.  Enhanced Photocurrent Quantum Yield by Electronic Interaction between Zinc Porphyrin and Rhodamine B Molecules in Al/Dye/Au Sandwich-Type Solar Cell , 1997 .

[15]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[16]  M. Kawasaki,et al.  Effects of 5-Membered Heteroaromatic Spacers on Structures of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells , 2007 .

[17]  D. Klug,et al.  Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes , 2000 .

[18]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[19]  Krishnan Rajeshwar,et al.  Photoelectrochemical Behavior of Polychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays for Dye-Sensitized Solar Cells , 2009 .

[20]  Application of TiO2 nano-particles on the electrode of dye-sensitized solar cells , 2009 .

[21]  Kerry B. Burke,et al.  Role of Solvent Trapping Effects in Determining the Structure and Morphology of Ternary Blend Organic Devices , 2009 .

[22]  Michael Grätzel,et al.  Substituent effect on the meso-substituted porphyrins: theoretical screening of sensitizer candidates for dye-sensitized solar cells. , 2009, The journal of physical chemistry. A.

[23]  S. Forrest,et al.  Simultaneous heterojunction organic solar cells with broad spectral sensitivity , 2008 .

[24]  E. Diau,et al.  Design and Characterization of Novel Porphyrins with Oligo(phenylethylnyl) Links of Varied Length for Dye-Sensitized Solar Cells: Synthesis and Optical, Electrochemical, and Photovoltaic Investigation , 2009 .

[25]  H. Imahori,et al.  Giant multiporphyrin arrays as artificial light-harvesting antennas. , 2004, The journal of physical chemistry. B.

[26]  Y. Amao,et al.  Photovoltaic conversion using Zn chlorophyll derivative assembled in hydrophobic domain onto nanocrystalline TiO2 electrode. , 2007, Biosensors & bioelectronics.

[27]  Osamu Yoshikawa,et al.  Synthesis and Photophysical and Photovoltaic Properties of Porphyrin−Furan and −Thiophene Alternating Copolymers , 2009 .

[28]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[29]  N. Komatsu,et al.  Spectral and theoretical studies on effective and selective non-covalent interaction between tetrahexylporphyrins and fullerenes. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[30]  J. Durrant,et al.  Slow electron injection on Ru-Phthalocyanine sensitized TiO2. , 2007, Journal of the American Chemical Society.

[31]  C. Yeh,et al.  Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate , 2009 .

[32]  P. Peumans,et al.  Control of Electric Field Strength and Orientation at the Donor–Acceptor Interface in Organic Solar Cells , 2008 .

[33]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[34]  Fabrice Odobel,et al.  Porphyrin dyes for TiO2 sensitization , 2003 .

[35]  C. Chou,et al.  Preparation of TiO2/dye composite particles and their applications in dye-sensitized solar cell , 2008 .

[36]  Jong Kang Park,et al.  Doubly β-Functionalized Meso−Meso Directly Linked Porphyrin Dimer Sensitizers for Photovoltaics , 2009 .

[37]  D. Guldi,et al.  Stabilization of charge-separated states in phthalocyanine-fullerene ensembles through supramolecular donor-acceptor interactions. , 2006, Journal of the American Chemical Society.

[38]  K. Ogawa,et al.  Photoinduced electron transfer and excitation energy transfer in directly linked zinc porphyrin/zinc phthalocyanine composite. , 2006, The journal of physical chemistry. A.

[39]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[40]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[41]  Yuliang Li,et al.  The Progress on Design and Synthesis of Photoactive Porphyrins-based Dyads, Triads and Polymers , 2007 .

[42]  S. H. Lee,et al.  AM1 molecular screening of novel porphyrin analogues as dye-sensitized solar cells , 2007 .

[43]  T. Savenije,et al.  Photo-induced unidirectional electron transfer in a porphyrin heterojunction , 1995 .

[44]  K. Leo,et al.  Aging of flat heterojunction zinc phthalocyanine/fullerene C60 organic solar cells , 2010 .

[45]  M. Grätzel,et al.  Structure-function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. , 2009, Chemistry.

[46]  D. Wheeler,et al.  Metalloporphyrin assemblies on pyridine-functionalized titanium dioxide. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[47]  J. Hupp,et al.  Dye sensitized solar cells: TiO2 sensitization with a bodipy-porphyrin antenna system. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[48]  Christoph J. Brabec,et al.  Organic tandem solar cells: A review , 2009 .

[49]  Qing Wang,et al.  Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells , 2007 .

[50]  Y. Amao,et al.  Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. , 2004, Biosensors & bioelectronics.

[51]  Helmut Neugebauer,et al.  Flexible, long-lived, large-area, organic solar cells , 2007 .

[52]  E. Diau,et al.  Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells , 2010 .

[53]  Paul A. Karr,et al.  Photosynthetic reaction center mimicry of a "special pair" dimer linked to electron acceptors by a supramolecular approach: self-assembled cofacial zinc porphyrin dimer complexed with fullerene(s). , 2007, Chemistry.

[54]  L. Dai,et al.  Bilayer- and bulk-heterojunction solar cells using liquid crystalline porphyrins as donors by solution processing , 2007 .

[55]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[56]  D. Schuster,et al.  Energy and electron transfer in β-alkynyl-linked porphyrin-[60]fullerene dyads , 2006 .

[57]  Hooi Ling Kee,et al.  Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells , 2007 .

[58]  S. Fukuzumi,et al.  Light energy conversion using mixed molecular nanoclusters. Porphyrin and C60 cluster films for efficient photocurrent generation , 2003 .

[59]  Y. Amao,et al.  Near-IR light-sensitized voltaic conversion system using nanocrystalline TiO2 film by Zn chlorophyll derivative aggregate. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[60]  Weihua Tang,et al.  Efficient bulk heterojunction solar cells with poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells. , 2010, ACS applied materials & interfaces.

[61]  Jian Li,et al.  Efficient Organic Solar Cells Based on Planar Metallophthalocyanines , 2009 .

[62]  A. McDonagh,et al.  Ruthenium phthalocyanine-bipyridyl dyads as sensitizers for dye-sensitized solar cells: dye coverage versus molecular efficiency. , 2009, Inorganic chemistry.

[63]  Martin Pfeiffer,et al.  Organic p-i-n solar cells , 2004 .

[64]  D. Macfarlane,et al.  Ionic liquid electrolyte porphyrin dye sensitised solar cells. , 2010, Chemical communications.

[65]  A. Goossens,et al.  Electron Trapping in Porphyrin-Sensitized Porous Nanocrystalline TiO2 Electrodes , 1996 .

[66]  Jun-Ho Yum,et al.  Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. , 2007, Angewandte Chemie.

[67]  Jong Kang Park,et al.  Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters , 2007 .

[68]  K. Kikuchi,et al.  Fabrication and characterization of fullerene/porphyrin bulk heterojunction solar cells , 2010 .

[69]  S. Fukuzumi,et al.  Supramolecular Photovoltaic Cells Based on Composite Molecular Nanoclusters: Dendritic Porphyrin and C60, Porphyrin Dimer and C60, and Porphyrin−C60 Dyad , 2004 .

[70]  S. Sasaki,et al.  Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[71]  C. Yeh,et al.  Design and characterization of highly efficient porphyrin sensitizers for green see-through dye-sensitized solar cells. , 2009, Physical chemistry chemical physics : PCCP.

[72]  Wolfgang Kowalsky,et al.  Highly efficient organic tandem solar cells using an improved connecting architecture , 2007 .

[73]  Y. Wada,et al.  Dependence of Photocurrent and Conversion Efficiency of Titania-Based Solar Cell on the Qy Absorption and One Electron-Oxidation Potential of Pheophorbide Sensitizer , 2008 .

[74]  J. Nelson The physics of solar cells , 2003 .

[75]  J. Andréasson,et al.  Energy and photoinduced electron transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. , 2006, Journal of the American Chemical Society.

[76]  P. Venkateswara Rao,et al.  Functionalized zinc porphyrin as light harvester in dye sensitized solar cells , 2008 .

[77]  J. Lindsey Synthetic routes to meso-patterned porphyrins. , 2010, Accounts of chemical research.

[78]  Y. Amao,et al.  Dye-Sensitized Solar Cell Using a TiO2 Nanocrystalline Film Electrode Modified by an Aluminum Phthalocyanine and Myristic Acid Coadsorption Layer , 2003 .

[79]  Ryota Goto,et al.  Enhancement of incident photon-to-current conversion efficiency for phthalocyanine-sensitized solar cells by 3D molecular structuralization. , 2010, Journal of the American Chemical Society.

[80]  E. Palomares,et al.  Extended π-aromatic systems for energy conversion: phthalocyanines and porphyrins in molecular solar cells , 2009 .

[81]  B. Röder,et al.  The influence of solvent polarity and metalation on energy and electron transfer in porphyrin-phthalocyanine heterotrimers. , 2007, The journal of physical chemistry. B.

[82]  N. S. Sariciftci,et al.  Photoinduced charge and energy transfer involving fullerene derivatives , 2006, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[83]  I. Goldberg,et al.  One-step conversions of a simple corrole into chiral and amphiphilic derivatives , 2003 .

[84]  D. González‐Rodríguez,et al.  Phthalocyanines, subphthalocyanines and porphyrins for energy and electron transfer applications , 2009 .

[85]  K. Kaunisto,et al.  Photoinduced electron transfer in multilayer self-assembled structures of porphyrins and porphyrin–fullerene dyads on ITO , 2005 .

[86]  R. Humphry-Baker,et al.  Artificial Photosynthesis. 2. Investigations on the Mechanism of Photosensitization of Nanocrystalline TiO2 Solar Cells by Chlorophyll Derivatives , 1994 .

[87]  C. Yeh,et al.  Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. , 2010, Chemical communications.

[88]  V. Singh,et al.  Copper phthalocyanine based Schottky diode solar cells , 2007 .

[89]  Photogeneration and transport of charge carriers in a porphyrin p/n heterojunction. , 1997 .

[90]  T. Vuorinen,et al.  Photoinduced electron transfer and photocurrent in multicomponent organic molecular films containing oriented porphyrin-fullerene dyad , 2008 .

[91]  T. Hasobe,et al.  Supramolecular nanoarchitectures for light energy conversion. , 2010, Physical chemistry chemical physics : PCCP.

[92]  T. Umeyama,et al.  Donor−Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion , 2009 .

[93]  L. Spiccia,et al.  Improved performance of porphyrin-based dye sensitised solar cells by phosphinic acid surface treatment , 2009 .

[94]  B. Suijkerbuijk,et al.  Efficient exciton transport in layers of self-assembled porphyrin derivatives. , 2008, Journal of the American Chemical Society.

[95]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[96]  Lingamallu Giribabu,et al.  Porphyrin-rhodanine dyads for dye sensitized solar cells , 2006 .

[97]  Uli Lemmer,et al.  Organic tandem solar cells comprising polymer and small-molecule subcells , 2006 .

[98]  C. Wamser,et al.  Synthesis and Characterization of Electropolymerized Nanostructured Aminophenylporphyrin Films , 2010 .

[99]  Quan Li,et al.  Microfocus X-ray Diffraction Study of the Columnar Phase of Porphyrin-Based Mesogens , 2007 .

[100]  Dongho Kim,et al.  Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[101]  Gordon G Wallace,et al.  Zn-Zn porphyrin dimer-sensitized solar cells: toward 3-D light harvesting. , 2009, Journal of the American Chemical Society.

[102]  Carboxy-1,4-phenylenevinylene- and carboxy-2, 6-naphthylene-vinylene unsymmetrical substituted zinc phthalocyanines for dye-sensitized solar cells , 2009 .

[103]  M. Zandler,et al.  Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex. , 2004, Journal of the American Chemical Society.

[104]  W. M. Campbell,et al.  Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[105]  B. Röder,et al.  Photoinduced electron and energy transfer in a new porphyrin–phthalocyanine triad , 2006 .

[106]  S. Sasaki,et al.  Effects of plant carotenoid spacers on the performance of a dye-sensitized solar cell using a chlorophyll derivative: Enhancement of photocurrent determined by one electron-oxidation potential of each carotenoid , 2006 .

[107]  Jun-Ho Yum,et al.  Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine. , 2007, Angewandte Chemie.

[108]  A. Bard,et al.  Reversible Charge Trapping/Detrapping in a Photoconductive Insulator of Liquid Crystal Zinc Porphyrin , 1997 .

[109]  D. Schuster,et al.  Synthesis and Photophysics of a Copper-Porphyrin-Styrene-C60Hybrid† , 2003 .

[110]  J. Rebek,et al.  Exceptionally strong electronic communication through hydrogen bonds in porphyrin-C60 pairs. , 2006, Angewandte Chemie.

[111]  C. Black,et al.  Phthalocyanine blends improve bulk heterojunction solar cells. , 2010, Journal of the American Chemical Society.

[112]  Yasuyuki Araki,et al.  Quinoxaline-Fused Porphyrins for Dye-Sensitized Solar Cells , 2008 .

[113]  K. Ohkubo,et al.  π-Complex formation in electron-transfer reactions of porphyrins , 2004 .

[114]  J. Hupp,et al.  Dye-sensitized solar cells: sensitizer-dependent injection into ZnO nanotube electrodes. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[115]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[116]  Jianjun He,et al.  Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO(2) electrode. , 2002, Journal of the American Chemical Society.

[117]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[118]  Atula S. D. Sandanayaka,et al.  Preparation and Photophysical and Photoelectrochemical Properties of Supramolecular Porphyrin Nanorods Structurally Controlled by Encapsulated Fullerene Derivatives , 2009 .

[119]  Christoph J. Brabec,et al.  Sensitization of low bandgap polymer bulk heterojunction solar cells , 2002 .

[120]  C. Yeh,et al.  Study of the Applicability of TiO2/Dye Composite Particles for a Dye-Sensitized Solar Cell , 2008 .

[121]  S. Sasaki,et al.  Efficient Dye-Sensitized Solar Cell Based on oxo-Bacteriochlorin Sensitizers with Broadband Absorption Capability , 2009 .

[122]  Barry P Rand,et al.  Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. , 2006, Journal of the American Chemical Society.

[123]  Gordon G. Wallace,et al.  Injection limitations in a series of porphyrin dye-sensitized solar cells , 2010 .

[124]  Xiao‐Feng Wang,et al.  Cyclic tetrapyrrole based molecules for dye-sensitized solar cells , 2010 .

[125]  Michael Grätzel,et al.  Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. , 2010, Angewandte Chemie.

[126]  E. Diau,et al.  Effects of aggregation and electron injection on photovoltaic performance of porphyrin-based solar cells with oligo(phenylethynyl) links inside TiO(2) and Al(2)O(3) nanotube arrays. , 2010, Physical chemistry chemical physics : PCCP.

[127]  Chih-Wei Chang,et al.  Femtosecond Transient Absorption of Zinc Porphyrins with Oligo(phenylethylnyl) Linkers in Solution and on TiO2 Films , 2009 .

[128]  A. Bard,et al.  Photovoltaic effect in symmetrical cells of a liquid crystal porphyrin , 1990 .

[129]  Anders Hagfeldt,et al.  Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. , 2007, Journal of the American Chemical Society.

[130]  Claudia N. Hoth,et al.  Printing highly efficient organic solar cells. , 2008, Nano letters.

[131]  Stephen R. Forrest,et al.  A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell , 2005 .

[132]  Dong Hee Kim,et al.  DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. , 2008, Physical chemistry chemical physics : PCCP.

[133]  Yu-Chien Wang,et al.  Preparation and Spectral, Electrochemical, and Photovoltaic Properties of Acene-Modified Zinc Porphyrins , 2010 .

[134]  S. Ito,et al.  Effects of meso-Diarylamino Group of Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties , 2010 .

[135]  Xianxi Zhang,et al.  A theoretical interpretation and screening of porphyrin sensitizer candidates with anticipated good photo-to-electric conversion performances for dye-sensitized solar cells , 2010 .

[136]  Seigo Ito,et al.  Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. , 2009, Accounts of chemical research.

[137]  T. Yamaguchi,et al.  ENHANCED PHOTOCURRENT IN AL/PORPHYRIN SCHOTTKY BARRIER CELL WITH HETERODIMER CONSISTING OF METAL-FREE PORPHYRIN AND ZINC PORPHYRIN , 1999 .

[138]  Hans-Jürgen Prall,et al.  Enhanced spectral coverage in tandem organic solar cells , 2006 .

[139]  Bin Zhao,et al.  Synthesis and photovoltaic properties of polythiophene stars with porphyrin core , 2010 .

[140]  Hwan-Kyu Kim,et al.  Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization , 2007 .

[141]  P. Ballester,et al.  The effect of molecular aggregates over the interfacial charge transfer processes on dye sensitized solar cells , 2008 .

[142]  S. Fukuzumi,et al.  Quaternary self-organization of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells. , 2003, Journal of the American Chemical Society.

[143]  Dongho Kim,et al.  Unusually high performance photovoltaic cell based on a [60]fullerene metal cluster-porphyrin dyad SAM on an ITO electrode. , 2005, Journal of the American Chemical Society.

[144]  Wolfgang Brütting,et al.  Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells , 2001 .

[145]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[146]  Brian A. Gregg,et al.  Organic and nano-structured composite photovoltaics: An overview , 2005 .

[147]  Eiichi Abe,et al.  Effect of functional group on photochemical properties and photosensitization of TiO2 electrode sensitized by porphyrin derivatives , 2002 .

[148]  Sung-Han Kim,et al.  Chlorophyll-layer-inserted poly(3-hexyl-thiophene) solar cell having a high light-to-current conversion efficiency up to 1.48% , 2005 .

[149]  B. Gregg,et al.  Doping highly ordered organic semiconductors: experimental results and fits to a self-consistent model of excitonic processes, doping, and transport. , 2005, The journal of physical chemistry. B.

[150]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[151]  Stephen Z. D. Cheng,et al.  Self-Assembly of Porphyrin and Fullerene Supramolecular Complex into Highly Ordered Nanostructure by Simple Thermal Annealing , 2008 .

[152]  Eric R. Waclawik,et al.  Characterization of a Porphyrin-Containing Dye-Sensitized Solar Cell , 2004 .

[153]  Anthony K. Burrell,et al.  Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell , 2004 .

[154]  K. Kaunisto,et al.  Photoinduced charge transfer through films containing poly(hexylthiophene), phthalocyanine, and porphyrin–fullerene layers , 2009 .

[155]  Yasuyuki Araki,et al.  Naphthyl-Fused π-Elongated Porphyrins for Dye-Sensitized TiO2 Cells , 2008 .

[156]  F. Habraken,et al.  Photovoltaic effects in porphyrin polymer films and heterojunctions. , 1996 .

[157]  Seunghun Eu,et al.  Effects of Porphyrin Substituents and Adsorption Conditions on Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells , 2009 .

[158]  C. Wamser,et al.  Syntheses and optoelectronic properties of amino/carboxyphenylporphyrins for potential use in dye-sensitized TiO2 solar cells , 2007 .

[159]  Nathan S. Lewis,et al.  Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 , 2005 .

[160]  Susumu Yoshikawa,et al.  Comparison of electrode structures and photovoltaic properties of porphyrin-sensitized solar cells with TiO2 and Nb, Ge, Zr-added TiO2 composite electrodes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[161]  Werner,et al.  Novel optimization principles and efficiency limits for semiconductor solar cells. , 1994, Physical review letters.

[162]  M. Grätzel,et al.  Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[163]  Mm Martijn Wienk,et al.  Functionalized dendritic oligothiophenes: ruthenium phthalocyanine complexes and their application in bulk heterojunction solar cells. , 2009, Journal of the American Chemical Society.

[164]  Y. Amao,et al.  Dye-sensitized solar cell with the near-infrared sensitization of aluminum phthalocyanine , 2003 .

[165]  R. Koeppe,et al.  Complexation of pyrrolidinofullerenes and zinc-phthalocyanine in a bilayer organic solar cell structure , 2005 .

[166]  Donghang Yan,et al.  Organic photovoltaic cells with near infrared absorption spectrum , 2007 .

[167]  Yicheng Lu,et al.  Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. , 2006, The journal of physical chemistry. B.

[168]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[169]  Qing Wang,et al.  Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. , 2005, The journal of physical chemistry. B.

[170]  Carl C. Wamser,et al.  Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2 , 2000 .

[171]  John M. Warman,et al.  Charge migration in supramolecular stacks of peripherally substituted porphyrins , 1991, Nature.

[172]  W. M. Campbell,et al.  Understanding and Improving Solid-State Polymer/C60-Fullerene Bulk-Heterojunction Solar Cells Using Ternary Porphyrin Blends , 2007 .