Joint Invariant Signatures
暂无分享,去创建一个
[1] Olivier D. Faugeras,et al. Cartan's Moving Frame Method and Its Application to the Geometry and Evolution of Curves in the Euclidean, Affine and Projective Planes , 1993, Applications of Invariance in Computer Vision.
[2] Christopher M. Brown. Numerical evaluation of differential and semi-differential invariants , 1992 .
[3] Phillip A. Griffiths,et al. On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry , 1974 .
[4] E. Cartan. La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés , 1935 .
[5] P. Olver,et al. Moving Coframes: I. A Practical Algorithm , 1998 .
[6] Luc Van Gool,et al. Mirror and point symmetry under perspective skewing , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[7] P. Olver,et al. Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .
[8] Luc Van Gool,et al. Semi-differential invariants for nonplanar curves , 1992 .
[9] Leonard M. Blumenthal,et al. Theory and applications of distance geometry , 1954 .
[10] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[11] HakerSteven,et al. Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998 .
[12] Luc Van Gool,et al. The Characterization and Detection of Skewed Symmetry , 1995, Comput. Vis. Image Underst..
[13] P. Olver. Equivalence, Invariants, and Symmetry: References , 1995 .
[14] Wilhelm Killing. Erweiterung des Begriffes der Invarianten von Transformationsgruppen , 1889 .
[15] Arieh Iserles,et al. Geometric integration: numerical solution of differential equations on manifolds , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[16] K. Menger. Untersuchungen über allgemeine Metrik , 1928 .
[17] Peter J. Olver,et al. Symmetries of polynomials , 2000 .
[18] W. Miller,et al. Group analysis of differential equations , 1982 .
[20] Ehud Rivlin,et al. Scale space semi-local invariants , 1997, Image Vis. Comput..
[21] Peter J. Olver,et al. Differential invariants for parametrized projective surfaces , 1999 .
[22] E. Cartan,et al. Lecons sur la théorie des espacea : a connexion projective , 1937 .
[23] Mark L. Green,et al. The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces , 1978 .
[24] Andrew Zisserman,et al. Applications of Invariance in Computer Vision , 1993, Lecture Notes in Computer Science.
[25] A. Bruckstein,et al. Invariant signatures for planar shape recognition under partial occlusion , 1993 .
[26] Gary R. Jensen,et al. Higher Order Contact of Submanifolds of Homogeneous Spaces , 1977 .
[27] Peter J. Olver,et al. Moving frames and singularities of prolonged group actions , 2000 .
[28] Alfred M. Bruckstein,et al. Skew symmetry detection via invariant signatures , 1998, Pattern Recognit..
[29] P. Olver,et al. Affine Geometry, Curve Flows, and Invariant Numerical Approximations , 1996 .
[30] Alfred M. Bruckstein,et al. Invariant signatures for planar shape recognition under partial occlusion , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.
[31] N. Ibragimov,et al. Group analysis of difierential equations , 2000 .
[32] E. Cartan,et al. Leçons sur la géométrie projective complexe ; La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile ; Leçons sur la théorie des espaces à connexion projective , 1992 .
[33] Hugh Porteous. Linear Algebra and its Applications (Third edition)Title: Linear Algebra and its Applications ( Third edition ) Author: David C. Lay Addison Wesley 2003 , ISBN: 0-201-70970-8 , 2003 .
[34] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[35] G. Quispel,et al. Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[36] L. Gool,et al. Semi-differential invariants , 1992 .