Joint Invariant Signatures

Abstract A new, algorithmic theory of moving frames is applied to classify joint invariants and joint differential invariants of transformation groups. Equivalence and symmetry properties of submanifolds are completely determined by their joint signatures, which are parametrized by a suitable collection of joint invariants and/or joint differential invariants. A variety of fundamental geometric examples are developed in detail. Applications to object recognition problems in computer vision and the design of invariant numerical approximations are indicated.

[1]  Olivier D. Faugeras,et al.  Cartan's Moving Frame Method and Its Application to the Geometry and Evolution of Curves in the Euclidean, Affine and Projective Planes , 1993, Applications of Invariance in Computer Vision.

[2]  Christopher M. Brown Numerical evaluation of differential and semi-differential invariants , 1992 .

[3]  Phillip A. Griffiths,et al.  On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry , 1974 .

[4]  E. Cartan La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés , 1935 .

[5]  P. Olver,et al.  Moving Coframes: I. A Practical Algorithm , 1998 .

[6]  Luc Van Gool,et al.  Mirror and point symmetry under perspective skewing , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[8]  Luc Van Gool,et al.  Semi-differential invariants for nonplanar curves , 1992 .

[9]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[10]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[11]  HakerSteven,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998 .

[12]  Luc Van Gool,et al.  The Characterization and Detection of Skewed Symmetry , 1995, Comput. Vis. Image Underst..

[13]  P. Olver Equivalence, Invariants, and Symmetry: References , 1995 .

[14]  Wilhelm Killing Erweiterung des Begriffes der Invarianten von Transformationsgruppen , 1889 .

[15]  Arieh Iserles,et al.  Geometric integration: numerical solution of differential equations on manifolds , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  K. Menger Untersuchungen über allgemeine Metrik , 1928 .

[17]  Peter J. Olver,et al.  Symmetries of polynomials , 2000 .

[18]  W. Miller,et al.  Group analysis of differential equations , 1982 .

[20]  Ehud Rivlin,et al.  Scale space semi-local invariants , 1997, Image Vis. Comput..

[21]  Peter J. Olver,et al.  Differential invariants for parametrized projective surfaces , 1999 .

[22]  E. Cartan,et al.  Lecons sur la théorie des espacea : a connexion projective , 1937 .

[23]  Mark L. Green,et al.  The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces , 1978 .

[24]  Andrew Zisserman,et al.  Applications of Invariance in Computer Vision , 1993, Lecture Notes in Computer Science.

[25]  A. Bruckstein,et al.  Invariant signatures for planar shape recognition under partial occlusion , 1993 .

[26]  Gary R. Jensen,et al.  Higher Order Contact of Submanifolds of Homogeneous Spaces , 1977 .

[27]  Peter J. Olver,et al.  Moving frames and singularities of prolonged group actions , 2000 .

[28]  Alfred M. Bruckstein,et al.  Skew symmetry detection via invariant signatures , 1998, Pattern Recognit..

[29]  P. Olver,et al.  Affine Geometry, Curve Flows, and Invariant Numerical Approximations , 1996 .

[30]  Alfred M. Bruckstein,et al.  Invariant signatures for planar shape recognition under partial occlusion , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[31]  N. Ibragimov,et al.  Group analysis of difierential equations , 2000 .

[32]  E. Cartan,et al.  Leçons sur la géométrie projective complexe ; La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile ; Leçons sur la théorie des espaces à connexion projective , 1992 .

[33]  Hugh Porteous Linear Algebra and its Applications (Third edition)Title: Linear Algebra and its Applications ( Third edition ) Author: David C. Lay Addison Wesley 2003 , ISBN: 0-201-70970-8 , 2003 .

[34]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[35]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  L. Gool,et al.  Semi-differential invariants , 1992 .