Enlarged Krylov Subspace Methods and Preconditioners for Avoiding Communication
暂无分享,去创建一个
[1] Berkant Barla Cambazoglu,et al. Multi-level direct K-way hypergraph partitioning with multiple constraints and fixed vertices , 2008, J. Parallel Distributed Comput..
[2] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[3] Takumi Washio,et al. Ordering strategies and related techniques to overcome the trade-off between parallelism and convergence in incomplete factorizations , 1999, Parallel Comput..
[4] Edmond Chow,et al. Fine-Grained Parallel Incomplete LU Factorization , 2015, SIAM J. Sci. Comput..
[5] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[6] Julien Langou,et al. A note on the error analysis of classical Gram–Schmidt , 2006, Numerische Mathematik.
[7] Cornelis Vuik,et al. Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..
[8] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[9] Laura Grigori,et al. Communication Avoiding ILU0 Preconditioner , 2015, SIAM J. Sci. Comput..
[10] James Demmel,et al. CALU: A Communication Optimal LU Factorization Algorithm , 2011, SIAM J. Matrix Anal. Appl..
[11] Jocelyne Erhel,et al. A parallel GMRES version for general sparse matrices. , 1995 .
[12] J. Gilbert,et al. Sparse Partial Pivoting in Time Proportional to Arithmetic Operations , 1986 .
[13] Reinhard Nabben,et al. Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..
[14] Laura Grigori,et al. Robust algebraic Schur complement preconditioners based on low rank corrections , 2014 .
[15] Frédéric Guyomarc'h,et al. An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[16] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[17] Cornelis Vuik,et al. On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..
[18] Saad,et al. A Multi-Level Preconditioner with Applicationsto the Numerical Simulation of Coating ProblemsYousef , 1998 .
[19] Julien Langou,et al. Stability Analysis of QR factorization in an Oblique Inner Product , 2014, 1401.5171.
[20] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[21] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[22] James Demmel,et al. Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[23] John Van Rosendale. Minimizing Inner Product Data Dependencies in Conjugate Gradient Iteration , 1983, ICPP.
[24] Frédéric Guyomarc'h,et al. A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..
[25] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[26] Edmond Chow,et al. A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..
[27] Edmond Chow,et al. Parallel Implementation and Practical Use of Sparse Approximate Inverse Preconditioners with a Priori Sparsity Patterns , 2001, Int. J. High Perform. Comput. Appl..
[28] K. Burrage,et al. Restarted GMRES preconditioned by deflation , 1996 .
[29] H. Walker. Implementation of the GMRES method using householder transformations , 1988 .
[30] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[31] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[32] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[33] Howard C. Elman,et al. Relaxed and stabilized incomplete factorizations for non-self-adjoint linear systems , 1989 .
[34] Olaf Schenk,et al. Fast Methods for Computing Selected Elements of the Green's Function in Massively Parallel Nanoelectronic Device Simulations , 2013, Euro-Par.
[35] James Demmel,et al. Minimizing Communication in Linear Algebra , 2009, ArXiv.
[36] Xiaoye S. Li,et al. An overview of SuperLU: Algorithms, implementation, and user interface , 2003, TOMS.
[37] James Demmel,et al. Avoiding Communication in Two-Sided Krylov Subspace Methods , 2011 .
[38] Xiao-Chuan Cai,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[39] M. Gutknecht. BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .
[40] Jennifer A. Scott,et al. On Positive Semidefinite Modification Schemes for Incomplete Cholesky Factorization , 2014, SIAM J. Sci. Comput..
[41] François-Henry Rouet,et al. Modeling 1D Distributed-Memory Dense Kernels for an Asynchronous Multifrontal Sparse Solver , 2014, VECPAR.
[42] M. Benzi,et al. A comparative study of sparse approximate inverse preconditioners , 1999 .
[43] Alicja Smoktunowicz,et al. Numerical stability of orthogonalization methods with a non-standard inner product , 2012 .
[44] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[45] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .
[46] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[47] James Demmel,et al. Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..
[48] Michele Benzi,et al. Orderings for Incomplete Factorization Preconditioning of Nonsymmetric Problems , 1999, SIAM J. Sci. Comput..
[49] S.,et al. An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .
[50] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[51] Ümit V. Çatalyürek,et al. Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication , 1999, IEEE Trans. Parallel Distributed Syst..
[52] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[53] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[54] Kesheng Wu,et al. A Block Orthogonalization Procedure with Constant Synchronization Requirements , 2000, SIAM J. Sci. Comput..
[55] Tongxiang Gu,et al. Multiple search direction conjugate gradient method I: methods and their propositions , 2004, Int. J. Comput. Math..
[56] Pierre-Alexandre Bliman,et al. A cooperative conjugate gradient method for linear systems permitting multithread implementation of low complexity , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
[57] James Demmel,et al. Parallel numerical linear algebra , 1993, Acta Numerica.
[58] O. Axelsson,et al. Algebraic multilevel preconditioning methods, II , 1990 .
[59] M. Rozložník,et al. The loss of orthogonality in the Gram-Schmidt orthogonalization process , 2005 .
[60] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[61] Marcus J. Grote,et al. Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..
[62] Gary L. Miller,et al. Nested Dissection: A survey and comparison of various nested dissection algorithms , 1992 .
[63] Rajeev Thakur,et al. Improving the Performance of Collective Operations in MPICH , 2003, PVM/MPI.
[64] Jörg Liesen,et al. A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..
[65] L. Yu. Kolotilina,et al. Twofold deflation preconditioning of linear algebraic systems. I. Theory , 1998 .
[66] Wim Vanroose,et al. Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines , 2013, SIAM J. Sci. Comput..
[67] Yousef Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..
[68] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[69] James Demmel,et al. Avoiding communication in sparse matrix computations , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.
[70] S. A. Kharchenko,et al. Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..
[71] Olaf Schenk,et al. Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..