A Survey on Piezoelectric Ceramics for Generator Applications

Piezoelectric generators enable maintenance-free power supply for integrated electronics in smart system applications. The majority of publications consider the aspect of power transfer electronics; however, the influence of the transducer materials was rarely described. Recently, material characteristics received increased attention from the ceramics community. We set the focus of the present paper to commercially available piezoelectric ceramics. Different figures of merit are derived from system analysis using electromechanical modeling. They allow for the description of typical load scenarios and commercial piezoceramics. Derived rules are expected to be helpful for guiding ceramic engineers and system designers to succeed in improved generator solutions.

[1]  Leslie E. Cross,et al.  Dynamic Characteristics of Rainbow Ceramics , 1995 .

[2]  D. Berlincourt Piezoelectric ceramic compositional development , 1989 .

[3]  S. Hall,et al.  Design of a high efficiency, large stroke, electromechanical actuator , 1999 .

[4]  Diann Brei,et al.  Modeling and Study of the Quasi-Static Behavior of Piezoceramic Telescopic Actuation Architectures , 1999 .

[5]  Shashank Priya,et al.  Piezoelectric Energy Harvesting using Bulk Transducers , 2008 .

[6]  Claude Richard,et al.  Energy Harvesting using Non-linear Techniques , 2009 .

[7]  Diann Brei,et al.  Piezoceramic Telescopic Actuator Quasi-Static Experimental Characterization , 2003 .

[8]  Thomas Thundat Energetic materials: flexible approach pays off. , 2008, Nature nanotechnology.

[9]  Susan Trolier-McKinstry,et al.  Crystal Chemistry of Piezoelectric Materials , 2008 .

[10]  L. Doremus Charge Release of Several Ceramic Ferroelectrics under Various Temperature and Stress Conditions , 1959, Proceedings of the IRE.

[11]  A. J. Moskalik,et al.  Dynamic Performance of C-Block Array Architectures , 2001 .

[12]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[13]  P. Curie,et al.  Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .

[14]  G.K. Ottman,et al.  Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[15]  Gregory Ledenbach A Piezo Powered IC Transmitter , 1980, IEEE Transactions on Consumer Electronics.

[16]  D. Hall Review Nonlinearity in piezoelectric ceramics , 2001 .

[17]  James Douglas Ervin Design, characterization, and assessment of the recurve actuation architecture. , 1999 .

[18]  Xiaoxing Wang,et al.  Lead-free piezoceramic cymbal actuator , 2006 .

[19]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[20]  A. Safari,et al.  Piezoelectric and Acoustic Materials for Transducer Applications , 2008 .

[21]  Heath Hofmann,et al.  Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode , 2003 .