The Focusing NLS Equation with Step-Like Oscillating Background: The Genus 3 Sector

We consider the Cauchy problem for the focusing nonlinear Schrodinger equation with initial data approaching different plane waves $A_j\mathrm{e}^{\mathrm{i}\phi_j}\mathrm{e}^{-2\mathrm{i}B_jx}$, $j=1,2$ as $x\to\pm\infty$. The goal is to determine the long-time asymptotics of the solution, according to the value of $\xi=x/t$. The general situation is analyzed in [7] where we develop the Riemann-Hilbert approach and detect different scenarios of asymptotic analysis, depending on the relationships between the parameters $A_1$, $A_2$, $B_1$, and $B_2$. In particular, in the shock case $B_1<B_2$, some scenarios include genus $3$ sectors, i.e., ranges of values of $\xi$ where the leading term of the asymptotics is given in terms of hyperelliptic functions attached to a Riemann surface $M(\xi)$ of genus three. The present paper is devoted to the complete asymptotic analysis in such a sector.

[1]  J. Lenells The nonlinear steepest descent method for Riemann-Hilbert problems of low regularity , 2015, 1501.05329.

[2]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[3]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[4]  G. Biondini Riemann problems and dispersive shocks in self-focusing media , 2018, Physical Review E.

[5]  Gino Biondini,et al.  Universal Nature of the Nonlinear Stage of Modulational Instability. , 2015, Physical review letters.

[6]  G. Teschl,et al.  On the Cauchy Problem for the modified Korteweg-de Vries Equation with Steplike Finite-Gap Initial Data , 2009, 0909.3499.

[7]  Gino Biondini,et al.  Long‐Time Asymptotics for the Focusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions at Infinity and Asymptotic Stage of Modulational Instability , 2015, 1512.06095.

[8]  V. Novokshenov Temporal asymptotics for soliton equations in problems with step initial conditions , 2005 .

[9]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[10]  P. Deift,et al.  The toda rarefaction problem , 1996 .

[11]  A. B. D. Monvel,et al.  The Focusing NLS Equation with Step-Like Oscillating Background: Scenarios of Long-Time Asymptotics , 2020, Communications in Mathematical Physics.

[12]  Gerald Teschl,et al.  Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data , 2012, 1210.7434.

[13]  D. J. Needham,et al.  The large-time development of the solution to an initial-value problem for the Korteweg de Vries equation: I. Initial data has a discontinuous expansive step , 2008 .

[14]  Gino Biondini,et al.  Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions , 2014 .

[15]  P. Deift,et al.  The collisionless shock region for the long-time behavior of solutions of the KdV equation , 1994 .

[16]  J. Leach The large-time development of the solution to an initial-value problem for the Korteweg-de Vries equation: IV. Time dependent coefficients , 2017 .

[17]  C. Mee,et al.  The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions , 2014 .

[18]  G. Teschl,et al.  Rarefaction waves of the Korteweg–de Vries equation via nonlinear steepest descent , 2016, 1602.02427.

[19]  Gino Biondini,et al.  On the Spectrum of the Dirac Operator and the Existence of Discrete Eigenvalues for the Defocusing Nonlinear Schrödinger Equation , 2014 .

[20]  A. Gurevich,et al.  Nonstationary structure of a collisionless shock wave , 1973 .

[21]  T. Kappeler,et al.  Scattering and inverse scattering for steplike potentials in the Schrödinger equation , 1985 .

[22]  S. Venakides LONG TIME ASYMPTOTICS OF THE KORTEWEG-DE VRIES EQUATION , 1986 .

[23]  A. Minakov Asymptotics of step-like solutions for the Camassa-Holm equation , 2015, 1512.04762.

[24]  A. Gurevich,et al.  Decay of Initial Discontinuity in the Korteweg-de Vries Equation , 1973 .

[25]  B. Prinari,et al.  Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions , 2016 .

[26]  W. Hackbusch Singular Integral Equations , 1995 .

[27]  A. Minakov,et al.  Dispersive shock wave, generalized Laguerre polynomials, and asymptotic solitons of the focusing nonlinear Schrödinger equation , 2019, Journal of Mathematical Physics.

[28]  G. Teschl,et al.  On the Cauchy problem for the Korteweg–de Vries equation with steplike finite-gap initial data: I. Schwartz-type perturbations , 2008, 0812.4003.

[29]  Stephanos Venakides,et al.  Long‐time asymptotics of the nonlinear Schrödinger equation shock problem , 2007 .

[30]  Stephanos Venakides,et al.  New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .

[31]  A. Minakov,et al.  Laguerre polynomials and transitional asymptotics of the modified Korteweg–de Vries equation for step-like initial data , 2017, Analysis and Mathematical Physics.

[32]  John D. Fay Theta Functions on Riemann Surfaces , 1973 .

[33]  F. Smithies,et al.  Singular Integral Equations , 1955, The Mathematical Gazette.

[34]  J. Lenells Matrix Riemann–Hilbert problems with jumps across Carleson contours , 2014, Monatshefte für Mathematik.

[35]  Dmitry Shepelsky,et al.  Focusing NLS Equation: Long-Time Dynamics of Step-Like Initial Data , 2010 .

[36]  D. J. Needham,et al.  THE LARGE-TIME DEVELOPMENT OF THE SOLUTION TO AN INITIAL-VALUE PROBLEM FOR THE KORTEWEG–DE VRIES EQUATION. II. INITIAL DATA HAS A DISCONTINUOUS COMPRESSIVE STEP , 2014 .

[37]  Federica Vitale,et al.  The Inverse Scattering Transform for the Defocusing Nonlinear Schrödinger Equations with Nonzero Boundary Conditions , 2013 .

[38]  G. Teschl,et al.  Long-Time Asymptotics for the Toda Shock Problem: Non-Overlapping Spectra , 2014, Zurnal matematiceskoj fiziki, analiza, geometrii.