Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory

[1]  P. L. Pasternak On a new method of analysis of an elastic foundation by means of two foundation constants , 1954 .

[2]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[3]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[4]  R. Bellman,et al.  DIFFERENTIAL QUADRATURE: A TECHNIQUE FOR THE RAPID SOLUTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 1972 .

[5]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[6]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[7]  M. Pandey,et al.  Differential quadrature method in the buckling analysis of beams and composite plates , 1991 .

[8]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[9]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[10]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[11]  J.-M. Themlin,et al.  HETEROEPITAXIAL GRAPHITE ON 6H-SIC(0001): INTERFACE FORMATION THROUGH CONDUCTION-BAND ELECTRONIC STRUCTURE , 1998 .

[12]  Rodney S. Ruoff,et al.  Tailoring graphite with the goal of achieving single sheets , 1999 .

[13]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[14]  John Peddieson,et al.  Application of nonlocal continuum models to nanotechnology , 2003 .

[15]  L. Sudak,et al.  Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics , 2003 .

[16]  Azim Eskandarian,et al.  Atomistic viewpoint of the applicability of microcontinuum theories , 2004 .

[17]  Chunyu Li,et al.  Mass detection using carbon nanotube-based nanomechanical resonators , 2004 .

[18]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[19]  K. M. Liew,et al.  Continuum model for the vibration of multilayered graphene sheets , 2005 .

[20]  R. Naghdabadi,et al.  Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium , 2005 .

[21]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[22]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[23]  K. Liew,et al.  PREDICTING NANOVIBRATION OF MULTI-LAYERED GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MATRIX , 2006 .

[24]  C. Wang,et al.  Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory , 2006 .

[25]  R. Naghdabadi,et al.  An analytical approach to determination of bending modulus of a multi-layered graphene sheet , 2006 .

[26]  H. P. Lee,et al.  Dynamic properties of flexural beams using a nonlocal elasticity model , 2006 .

[27]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[28]  K. M. Liew,et al.  Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures , 2007 .

[29]  M. J. Abedini,et al.  A differential quadrature analysis of unsteady open channel flow , 2007 .

[30]  C. Wang,et al.  The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes , 2007, Nanotechnology.

[31]  C. Wang,et al.  Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory , 2007 .

[32]  J. N. Reddy,et al.  Nonlocal theories for bending, buckling and vibration of beams , 2007 .

[33]  C. Wang,et al.  Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams , 2007 .

[34]  J. N. Reddy,et al.  Nonlocal continuum theories of beams for the analysis of carbon nanotubes , 2008 .

[35]  A. Vafai,et al.  Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors , 2008 .

[36]  Y. Mai,et al.  Effects of a surrounding elastic medium on flexural waves propagating in carbon nanotubes via nonlocal elasticity , 2008 .

[37]  A. Waas,et al.  Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories , 2008 .

[38]  F. Guinea,et al.  Periodically rippled graphene: growth and spatially resolved electronic structure. , 2007, Physical review letters.

[39]  M T Ahmadian,et al.  Vibrational analysis of single-layered graphene sheets , 2008, Nanotechnology.

[40]  Chao Zhang,et al.  Orbital magnetization of graphene and graphene nanoribbons , 2008 .

[41]  C. Wang,et al.  Free vibration of nanorings/arches based on nonlocal elasticity , 2008 .

[42]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[43]  Abdelouahed Tounsi,et al.  Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity , 2008 .

[44]  A. Sakhaee-Pour,et al.  Elastic buckling of single-layered graphene sheet , 2009 .

[45]  Tony Murmu,et al.  Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM , 2009 .

[46]  Tony Murmu,et al.  Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method , 2009 .

[47]  S. C. Pradhan,et al.  VIBRATION ANALYSIS OF NANO-SINGLE-LAYERED GRAPHENE SHEETS EMBEDDED IN ELASTIC MEDIUM BASED ON NONLOCAL ELASTICITY THEORY , 2009 .

[48]  M. Aydogdu AXIAL VIBRATION OF THE NANORODS WITH THE NONLOCAL CONTINUUM ROD MODEL , 2009 .

[49]  S. C. Pradhan,et al.  Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models , 2009 .