Transcriptome analysis of the spider Phonotimpus pennimani reveals novel toxin transcripts
暂无分享,去创建一个
V. Jiménez-Jacinto | L. Vega-Alvarado | E. Diego-García | G. Ibarra-Núñez | K. Guillén-Navarro | L. V. García-Fajardo | Jonathan David Baza-Moreno
[1] S. Diochot. Pain-related toxins in scorpion and spider venoms: a face to face with ion channels , 2021, The Journal of Venomous Animals and Toxins Including Tropical Diseases.
[2] G. Ibarra-Núñez,et al. A new species of the genus Phonotimpus Gertsch amp; Davis (Araneae: Phrurolithidae) from Mexico and the transfer of Gosiphrurus schulzefenai Chamberlin amp; Ivie to Phonotimpus. , 2021, Zootaxa.
[3] L. Kuhn-Nentwig. Complex precursor structures of cytolytic cupiennins identified in spider venom gland transcriptomes , 2021, Scientific reports.
[4] B. Clémençon,et al. Neurotoxin Merging: A Strategy Deployed by the Venom of the Spider Cupiennius salei to Potentiate Toxicity on Insects , 2020, Toxins.
[5] L. F. García,et al. Prey and Venom Efficacy of Male and Female Wandering Spider, Phoneutria boliviensis (Araneae: Ctenidae) , 2019, Toxins.
[6] W. Nentwig,et al. Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses , 2019, Toxins.
[7] G. King. Tying pest insects in knots: the deployment of spider-venom-derived knottins as bioinsecticides. , 2019, Pest management science.
[8] G. I. Núñez,et al. Comportamiento depredador de dos especies de arañas del género Phonotimpus (Araneae: Phrurolithidae) , 2019, Acta Zoologica Mexicana.
[9] M. Heller,et al. The Dual Prey-Inactivation Strategy of Spiders—In-Depth Venomic Analysis of Cupiennius salei , 2019, Toxins.
[10] G. Ibarra-Núñez,et al. A new species of Phonotimpus Gertsch Davis, 1940 (Araneae: Phrurolithidae) from Mexico. , 2019, Zootaxa.
[11] Dong-Qiang Cheng,et al. The origins of the Psechridae: Web-building lycosoid spiders. , 2018, Molecular phylogenetics and evolution.
[12] Sudhir Kumar,et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.
[13] Torsten Schwede,et al. SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..
[14] Gonzalo Giribet,et al. Phylogenomics, Diversification Dynamics, and Comparative Transcriptomics across the Spider Tree of Life , 2018, Current Biology.
[15] G. Ibarra-Núñez,et al. Redescription of Phonotimpus separatus Gertsch Davis, 1940 (Araneae: Phrurolithidae) and description of two new species of Phonotimpus from Mexico. , 2018, Zootaxa.
[16] K. Birkhofer,et al. An estimated 400–800 million tons of prey are annually killed by the global spider community , 2017, The Science of Nature.
[17] E. Grishin,et al. Structure of purotoxin-2 from wolf spider: modular design and membrane-assisted mode of action in arachnid toxins. , 2016, The Biochemical journal.
[18] M. Kuntner,et al. Streamlining DNA Barcoding Protocols: Automated DNA Extraction and a New cox1 Primer in Arachnid Systematics , 2014, PloS one.
[19] cvu,et al. LOS VENENOS DE ARÁCNIDOS: SU SORPRENDENTE PODER INSECTICIDA Y SU RARA CAPACIDAD ANTIBIÓTICA , 2014 .
[20] G. Giribet,et al. Phylogenomic Analysis of Spiders Reveals Nonmonophyly of Orb Weavers , 2014, Current Biology.
[21] M. Ramírez. The Morphology And Phylogeny Of Dionychan Spiders (Araneae: Araneomorphae) , 2014 .
[22] Jeremy A. Miller,et al. Which specimens from a museum collection will yield DNA barcodes? A time series study of spiders in alcohol , 2013, ZooKeys.
[23] Colin N. Dewey,et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.
[24] G. King,et al. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. , 2013, Annual review of entomology.
[25] Lucía Peralta. Las arañas del banano (Phoneutria spp.), las más temidas de Centro y Sur América , 2013 .
[26] Baohong Zhang,et al. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs , 2012, Plant Molecular Biology.
[27] Raziel César Lucio-Palacio. Nuevos registros de arañas errantes para el Estado de Aguascalientes, México , 2012 .
[28] Andrés O. Taucare-Ríos. Arañas epigeas (Araneae) en el Parque Nacional Volcan Isluga, Altiplano chileno , 2012 .
[29] J. Niu,et al. Evaluation of suitable reference genes for quantitative RT-PCR during development and abiotic stress in Panonychus citri (McGregor) (Acari: Tetranychidae) , 2012, Molecular Biology Reports.
[30] D. Chaves-Moreira,et al. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase‐D toxin , 2011, Journal of cellular biochemistry.
[31] R. Stöcklin,et al. Venom Composition and Strategies in Spiders: Is Everything Possible? , 2011 .
[32] E. Grishin,et al. Molecular diversity of spider venom , 2009, Biochemistry (Moscow).
[33] Matthew H J Cordes,et al. Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. , 2008, Molecular biology and evolution.
[34] G. King,et al. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. , 2008, Toxicon : official journal of the International Society on Toxinology.
[35] S. S. Veiga,et al. Identification, cloning, expression and functional characterization of an astacin-like metalloprotease toxin from Loxosceles intermedia (brown spider) venom. , 2007, The Biochemical journal.
[36] P. Escoubas. Molecular diversification in spider venoms: A web of combinatorial peptide libraries , 2006, Molecular Diversity.
[37] A. Mukherjee,et al. Orally active acaricidal peptide toxins from spider venom. , 2006, Toxicon : official journal of the International Society on Toxinology.
[38] E. Daza,et al. Arañas tejedoras: uso de diferentes microhábitats en un bosque andino de Colombia , 2006 .
[39] Paul D. N. Hebert,et al. Identifying spiders through DNA barcodes , 2005 .
[40] P. Escoubas,et al. Pharmacologically active spider peptide toxins , 2003, Cellular and Molecular Life Sciences CMLS.
[41] J. Mackay,et al. Discovery and Structure of a Potent and Highly Specific Blocker of Insect Calcium Channels* , 2001, The Journal of Biological Chemistry.
[42] G. Dayanithi,et al. Interaction of SNX482 with Domains III and IV Inhibits Activation Gating of α1E (CaV2.3) Calcium Channels , 2001 .
[43] C. Kushmerick,et al. Phoneutria nigriventer Toxin Tx3‐1 Blocks A‐Type K+ Currents Controlling Ca2+ Oscillation Frequency in GH3 Cells , 1999, Journal of neurochemistry.
[44] S. Riechert. THE HOWS AND WHYS OF SUCCESSFUL PEST SUPPRESSION BY SPIDERS: INSIGHTS FROM CASE STUDIES , 1999 .
[45] G. Wang,et al. Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. , 1998, Biochemistry.
[46] M. Nilges,et al. The structure of a novel insecticidal neurotoxin, ω-atracotoxin-HV1, from the venom of an Australian funnel web spider , 1997, Nature Structural Biology.
[47] S. Carranza,et al. First molecular evidence for the existence of a Tardigrada + Arthropoda clade. , 1996, Molecular biology and evolution.
[48] R. Vrijenhoek,et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.
[49] W. Nentwig,et al. Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae:Ctenidae). , 1994, Toxicon : official journal of the International Society on Toxinology.
[50] H. W. Levi,et al. Systematics and Evolution of Spiders (Araneae) , 1991 .