Transcriptome analysis of the spider Phonotimpus pennimani reveals novel toxin transcripts

Abstract Background: Phonotimpus pennimani (Araneae, Phrurolithidae) is a small-sized (3-5 mm) spider endemic to the Tacaná volcano in Chiapas, Mexico, where it is found in soil litter of cloud forests and coffee plantations. Its venom composition has so far not been investigated, partly because it is not a species of medical significance. However, it does have an important impact on the arthropod populations of its natural habitat. Methods: Specimens were collected in Southeastern Mexico (Chiapas) and identified taxonomically by morphological characteristics. A partial sequence from the mitochondrial gene coxI was amplified. Sequencing on the Illumina platform of a transcriptome library constructed from 12 adult specimens revealed 25 toxin or toxin-like genes. Transcripts were validated (RT-qPCR) by assessing the differential expression of the toxin-like PpenTox1 transcript and normalising with housekeeping genes. Results: Analysis of the coxI-gene revealed a similarity to other species of the family Phrurolithidae. Transcriptome analysis also revealed similarity with venom components of species from the families Ctenidae, Lycosidae, and Sicariidae. Expression of the toxin-like PpenTox1 gene was different for each developmental stage (juvenile or adult) and also for both sexes (female or male). Additionally, a partial sequence was obtained for the toxin-like PpenTox1 from DNA. Conclusion: Data from the amplification of the mitochondrial coxI gene confirmed that P. pennimani belongs to the family Phrurolithidae. New genes and transcripts coding for venom components were identified.

[1]  S. Diochot Pain-related toxins in scorpion and spider venoms: a face to face with ion channels , 2021, The Journal of Venomous Animals and Toxins Including Tropical Diseases.

[2]  G. Ibarra-Núñez,et al.  A new species of the genus Phonotimpus Gertsch amp; Davis (Araneae: Phrurolithidae) from Mexico and the transfer of Gosiphrurus schulzefenai Chamberlin amp; Ivie to Phonotimpus. , 2021, Zootaxa.

[3]  L. Kuhn-Nentwig Complex precursor structures of cytolytic cupiennins identified in spider venom gland transcriptomes , 2021, Scientific reports.

[4]  B. Clémençon,et al.  Neurotoxin Merging: A Strategy Deployed by the Venom of the Spider Cupiennius salei to Potentiate Toxicity on Insects , 2020, Toxins.

[5]  L. F. García,et al.  Prey and Venom Efficacy of Male and Female Wandering Spider, Phoneutria boliviensis (Araneae: Ctenidae) , 2019, Toxins.

[6]  W. Nentwig,et al.  Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses , 2019, Toxins.

[7]  G. King Tying pest insects in knots: the deployment of spider-venom-derived knottins as bioinsecticides. , 2019, Pest management science.

[8]  G. I. Núñez,et al.  Comportamiento depredador de dos especies de arañas del género Phonotimpus (Araneae: Phrurolithidae) , 2019, Acta Zoologica Mexicana.

[9]  M. Heller,et al.  The Dual Prey-Inactivation Strategy of Spiders—In-Depth Venomic Analysis of Cupiennius salei , 2019, Toxins.

[10]  G. Ibarra-Núñez,et al.  A new species of Phonotimpus Gertsch Davis, 1940 (Araneae: Phrurolithidae) from Mexico. , 2019, Zootaxa.

[11]  Dong-Qiang Cheng,et al.  The origins of the Psechridae: Web-building lycosoid spiders. , 2018, Molecular phylogenetics and evolution.

[12]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[13]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[14]  Gonzalo Giribet,et al.  Phylogenomics, Diversification Dynamics, and Comparative Transcriptomics across the Spider Tree of Life , 2018, Current Biology.

[15]  G. Ibarra-Núñez,et al.  Redescription of Phonotimpus separatus Gertsch Davis, 1940 (Araneae: Phrurolithidae) and description of two new species of Phonotimpus from Mexico. , 2018, Zootaxa.

[16]  K. Birkhofer,et al.  An estimated 400–800 million tons of prey are annually killed by the global spider community , 2017, The Science of Nature.

[17]  E. Grishin,et al.  Structure of purotoxin-2 from wolf spider: modular design and membrane-assisted mode of action in arachnid toxins. , 2016, The Biochemical journal.

[18]  M. Kuntner,et al.  Streamlining DNA Barcoding Protocols: Automated DNA Extraction and a New cox1 Primer in Arachnid Systematics , 2014, PloS one.

[19]  cvu,et al.  LOS VENENOS DE ARÁCNIDOS: SU SORPRENDENTE PODER INSECTICIDA Y SU RARA CAPACIDAD ANTIBIÓTICA , 2014 .

[20]  G. Giribet,et al.  Phylogenomic Analysis of Spiders Reveals Nonmonophyly of Orb Weavers , 2014, Current Biology.

[21]  M. Ramírez The Morphology And Phylogeny Of Dionychan Spiders (Araneae: Araneomorphae) , 2014 .

[22]  Jeremy A. Miller,et al.  Which specimens from a museum collection will yield DNA barcodes? A time series study of spiders in alcohol , 2013, ZooKeys.

[23]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[24]  G. King,et al.  Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. , 2013, Annual review of entomology.

[25]  Lucía Peralta Las arañas del banano (Phoneutria spp.), las más temidas de Centro y Sur América , 2013 .

[26]  Baohong Zhang,et al.  miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs , 2012, Plant Molecular Biology.

[27]  Raziel César Lucio-Palacio Nuevos registros de arañas errantes para el Estado de Aguascalientes, México , 2012 .

[28]  Andrés O. Taucare-Ríos Arañas epigeas (Araneae) en el Parque Nacional Volcan Isluga, Altiplano chileno , 2012 .

[29]  J. Niu,et al.  Evaluation of suitable reference genes for quantitative RT-PCR during development and abiotic stress in Panonychus citri (McGregor) (Acari: Tetranychidae) , 2012, Molecular Biology Reports.

[30]  D. Chaves-Moreira,et al.  The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase‐D toxin , 2011, Journal of cellular biochemistry.

[31]  R. Stöcklin,et al.  Venom Composition and Strategies in Spiders: Is Everything Possible? , 2011 .

[32]  E. Grishin,et al.  Molecular diversity of spider venom , 2009, Biochemistry (Moscow).

[33]  Matthew H J Cordes,et al.  Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. , 2008, Molecular biology and evolution.

[34]  G. King,et al.  A rational nomenclature for naming peptide toxins from spiders and other venomous animals. , 2008, Toxicon : official journal of the International Society on Toxinology.

[35]  S. S. Veiga,et al.  Identification, cloning, expression and functional characterization of an astacin-like metalloprotease toxin from Loxosceles intermedia (brown spider) venom. , 2007, The Biochemical journal.

[36]  P. Escoubas Molecular diversification in spider venoms: A web of combinatorial peptide libraries , 2006, Molecular Diversity.

[37]  A. Mukherjee,et al.  Orally active acaricidal peptide toxins from spider venom. , 2006, Toxicon : official journal of the International Society on Toxinology.

[38]  E. Daza,et al.  Arañas tejedoras: uso de diferentes microhábitats en un bosque andino de Colombia , 2006 .

[39]  Paul D. N. Hebert,et al.  Identifying spiders through DNA barcodes , 2005 .

[40]  P. Escoubas,et al.  Pharmacologically active spider peptide toxins , 2003, Cellular and Molecular Life Sciences CMLS.

[41]  J. Mackay,et al.  Discovery and Structure of a Potent and Highly Specific Blocker of Insect Calcium Channels* , 2001, The Journal of Biological Chemistry.

[42]  G. Dayanithi,et al.  Interaction of SNX482 with Domains III and IV Inhibits Activation Gating of α1E (CaV2.3) Calcium Channels , 2001 .

[43]  C. Kushmerick,et al.  Phoneutria nigriventer Toxin Tx3‐1 Blocks A‐Type K+ Currents Controlling Ca2+ Oscillation Frequency in GH3 Cells , 1999, Journal of neurochemistry.

[44]  S. Riechert THE HOWS AND WHYS OF SUCCESSFUL PEST SUPPRESSION BY SPIDERS: INSIGHTS FROM CASE STUDIES , 1999 .

[45]  G. Wang,et al.  Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. , 1998, Biochemistry.

[46]  M. Nilges,et al.  The structure of a novel insecticidal neurotoxin, ω-atracotoxin-HV1, from the venom of an Australian funnel web spider , 1997, Nature Structural Biology.

[47]  S. Carranza,et al.  First molecular evidence for the existence of a Tardigrada + Arthropoda clade. , 1996, Molecular biology and evolution.

[48]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[49]  W. Nentwig,et al.  Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae:Ctenidae). , 1994, Toxicon : official journal of the International Society on Toxinology.

[50]  H. W. Levi,et al.  Systematics and Evolution of Spiders (Araneae) , 1991 .