Functional and anatomical properties of human visual cortical fields

Human visual cortical fields (VCFs) vary in size and anatomical location across individual subjects. Here, we used functional magnetic resonance imaging (fMRI) with retinotopic stimulation to identify VCFs on the cortical surface. We found that aligning and averaging VCF activations across the two hemispheres provided clear delineation of multiple retinotopic fields in visual cortex. The results show that VCFs have consistent locations and extents in different subjects that provide stable and accurate landmarks for functional and anatomical mapping. Interhemispheric comparisons revealed minor differences in polar angle and eccentricity tuning in comparable VCFs in the left and right hemisphere, and somewhat greater intersubject variability in the right than left hemisphere. We then used the functional boundaries to characterize the anatomical properties of VCFs, including fractional anisotropy (FA), magnetization transfer ratio (MTR) and the ratio of T1W and T2W images and found significant anatomical differences between VCFs and between hemispheres.

[1]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Xiaojian Kang,et al.  Diffusion properties of cortical and pericortical tissue: regional variations, reliability and methodological issues. , 2012, Magnetic resonance imaging.

[3]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[4]  Gareth J. Barker,et al.  3D MTR measurement: From 1.5 T to 3.0 T , 2006, NeuroImage.

[5]  K. D. Singh,et al.  BOLD Responses in Human Primary Visual Cortex are Insensitive to Substantial Changes in Neural Activity , 2013, Front. Hum. Neurosci..

[6]  Emmanuel L Barbier,et al.  Imaging cortical anatomy by high‐resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17 , 2002, Magnetic resonance in medicine.

[7]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[8]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[9]  A. Dale,et al.  Thinning of the cerebral cortex in aging. , 2004, Cerebral cortex.

[10]  Omar H. Butt,et al.  The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology , 2012, Current Biology.

[11]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.

[12]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[14]  David H. Brainard,et al.  Correction of Distortion in Flattened Representations of the Cortical Surface Allows Prediction of V1-V3 Functional Organization from Anatomy , 2014, PLoS Comput. Biol..

[15]  L. Robertson,et al.  Neuropsychological contributions to theories of part/whole organization , 1991, Cognitive Psychology.

[16]  Brian J. Scholl,et al.  Attentive tracking of objects vs. substances , 2010 .

[17]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[18]  Lawrence L. Wald,et al.  Accurate prediction of V1 location from cortical folds in a surface coordinate system , 2008, NeuroImage.

[19]  Katrin Amunts,et al.  White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability , 2006, NeuroImage.

[20]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[21]  Katrin Amunts,et al.  Locating the functional and anatomical boundaries of human primary visual cortex , 2009, NeuroImage.

[22]  D. V. van Essen,et al.  The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey , 1984, The Journal of comparative neurology.

[23]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[24]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[25]  I. Deary,et al.  Diffusion tensor and magnetization transfer MRI measurements of periventricular white matter hyperintensities in old age , 2009, Neurobiology of Aging.

[26]  Alan C. Evans,et al.  Automatic volumetric segmentation of human visual retinotopic cortex , 2003, NeuroImage.

[27]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[29]  Vision Research , 1961, Nature.

[30]  Mara Cercignani,et al.  Twenty‐five pitfalls in the analysis of diffusion MRI data , 2010, NMR in biomedicine.

[31]  Yevgeniy B. Sirotin,et al.  Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. , 2009, Nature.

[32]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[33]  Dongrong Xu,et al.  Correction of eddy‐current distortions in diffusion tensor images using the known directions and strengths of diffusion gradients , 2006, Journal of magnetic resonance imaging : JMRI.

[34]  Qiyong Guo,et al.  Retinotopic mapping of the peripheral visual field to human visual cortex by functional magnetic resonance imaging , 2012, Human brain mapping.

[35]  F. Previc Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications , 1990, Behavioral and Brain Sciences.

[36]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[37]  Timothy J. Herron,et al.  Regional variation, hemispheric asymmetries and gender differences in pericortical white matter , 2011, NeuroImage.

[38]  C. Tempelmann,et al.  Eddy current correction in diffusion‐weighted imaging using pairs of images acquired with opposite diffusion gradient polarity , 2004, Magnetic resonance in medicine.

[39]  Mert R. Sabuncu,et al.  Measuring and comparing brain cortical surface area and other areal quantities , 2012, NeuroImage.

[40]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[41]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Marlene Behrmann,et al.  Visuotopic Cortical Connectivity Underlying Attention Revealed with White-Matter Tractography , 2012, The Journal of Neuroscience.

[43]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[44]  R. Morris,et al.  Imaging age‐related cognitive decline: A comparison of diffusion tensor and magnetization transfer MRI , 2009, Journal of magnetic resonance imaging : JMRI.

[45]  Ayse Pinar Saygin,et al.  Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data , 2006, NeuroImage.

[46]  Roger B. H. Tootell,et al.  Does Retinotopy Influence Cortical Folding in Primate Visual Cortex? , 2009, The Journal of Neuroscience.

[47]  M. Giannelli,et al.  Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions , 2009, Journal of applied clinical medical physics.

[48]  Xiaojian Kang,et al.  Improving the resolution of functional brain imaging: analyzing functional data in anatomical space. , 2007, Magnetic resonance imaging.

[49]  Scott O. Murray,et al.  Hemispheric Asymmetry in Global/Local Processing: Effects of Stimulus Position and Spatial Frequency , 2002, NeuroImage.

[50]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[51]  Yuji Shen,et al.  Correction of high‐order eddy current induced geometric distortion in diffusion‐weighted echo‐planar images , 2004, Magnetic resonance in medicine.

[52]  D. Bohning,et al.  Reproducibility, Interrater Agreement, and Age-Related Changes of Fractional Anisotropy Measures at 3T in Healthy Subjects: Effect of the Applied b-Value , 2008, American Journal of Neuroradiology.

[53]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[54]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[55]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[56]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[57]  Timothy G. Feeman Equal Area World Maps: A Case Study , 2000, SIAM Rev..

[58]  Karen F. LaRocque,et al.  Where is human V4? Predicting the location of hV4 and VO1 from cortical folding. , 2014, Cerebral cortex.

[59]  Geoff J M Parker,et al.  Distortion correction for diffusion‐weighted MRI tractography and fMRI in the temporal lobes , 2010, Human brain mapping.

[60]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[61]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[62]  F. Barkhof,et al.  Diffusely Abnormal White Matter in Progressive Multiple Sclerosis: In Vivo Quantitative MR Imaging Characterization and Comparison between Disease Types , 2010, American Journal of Neuroradiology.

[63]  John P. Snyder,et al.  Map Projection Transformation: Principles and Applications , 1999 .

[64]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[65]  E. William Yund,et al.  Hemispherically-Unified Surface Maps of Human Cerebral Cortex: Reliability and Hemispheric Asymmetries , 2012, PloS one.

[66]  Lorin J. Elias,et al.  Upper and lower visual field differences in perceptual asymmetries , 2011, Brain Research.

[67]  A. Dale,et al.  Regional and progressive thinning of the cortical ribbon in Huntington’s disease , 2002, Neurology.

[68]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[69]  A. D. Cate,et al.  Intermodal attention modulates visual processing in dorsal and ventral streams , 2012, NeuroImage.

[70]  Denis Le Bihan,et al.  Looking into the functional architecture of the brain with diffusion MRI , 2003, Nature Reviews Neuroscience.

[71]  Andreas Bartels,et al.  Retinotopic maps and hemodynamic delays in the human visual cortex measured using arterial spin labeling , 2012, NeuroImage.

[72]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[73]  Kevin C. Chan,et al.  B-value dependence of DTI quantitation and sensitivity in detecting neural tissue changes , 2010, NeuroImage.

[74]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[76]  Jae-Hun Kim,et al.  Spatial accuracy of fMRI activation influenced by volume- and surface-based spatial smoothing techniques , 2007, NeuroImage.

[77]  B. Argall,et al.  Simplified intersubject averaging on the cortical surface using SUMA , 2006, Human brain mapping.

[78]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[79]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  John G. Csernansky,et al.  Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia , 2008, NeuroImage.

[81]  S. Francis,et al.  Correspondence of human visual areas identified using functional and anatomical MRI in vivo at 7 T , 2012, Journal of magnetic resonance imaging : JMRI.

[82]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.