Estimating outdoor advertising media visibility with voxel-based approach

[1]  Txomin Hermosilla,et al.  Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates , 2014 .

[2]  Lars Brabyn,et al.  Using viewsheds, GIS, and a landscape classification to tag landscape photographs , 2011 .

[3]  Y. Doytsher,et al.  Voxel based volumetric visibility analysis of urban environments , 2013 .

[4]  H. Mitásová,et al.  Scientific visualization of landscapes and landforms , 2012 .

[5]  Mariusz Sojka,et al.  The application of GIS and 3D graphic software to visual impact assessment of wind turbines , 2016 .

[6]  M. Llobera,et al.  Extending GIS-based visual analysis: the concept of visualscapes , 2003, Int. J. Geogr. Inf. Sci..

[7]  Jayson J. Murgoitio,et al.  Airborne LiDAR and Terrestrial Laser Scanning Derived Vegetation Obstruction Factors for Visibility Models , 2014, Trans. GIS.

[8]  Koichi Tsunekawa,et al.  Advanced LOS path-loss model in microcellular mobile communications , 2000, IEEE Trans. Veh. Technol..

[9]  Jaroslav Hofierka,et al.  A New 3‐D Solar Radiation Model for 3‐D City Models , 2012, Trans. GIS.

[10]  A. Turner,et al.  From Isovists to Visibility Graphs: A Methodology for the Analysis of Architectural Space , 2001 .

[11]  H. Pan,et al.  Polish 2010 growth references for school-aged children and adolescents , 2010, European Journal of Pediatrics.

[12]  Salles V. G. Magalhães,et al.  A Parallel Algorithm for Viewshed Computation on Grid Terrains , 2014, J. Inf. Data Manag..

[13]  Simon Kingham,et al.  Incorporating vegetation into visual exposure modelling in urban environments , 2011, Int. J. Geogr. Inf. Sci..

[14]  R Conroy-Dalton,et al.  The syntactical image of the city:a reciprocal definition of spatial elements and spatial syntaxes , 2003 .

[15]  M. Batty Polynucleated Urban Landscapes , 2001 .

[16]  Terje Gobakken,et al.  Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data , 2008 .

[17]  Kevin Lim,et al.  LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada , 2012, Remote. Sens..

[18]  Yi-Hsing Tseng,et al.  Identifying LiDAR sample uncertainty on terrain features from DEM simulation , 2014 .

[19]  Israel A. Wagner,et al.  Spatial Openness as a Practical Metric for Evaluating Built-up Environments , 2003 .

[20]  Jianhua Gong,et al.  A Sparse Voxel Octree-Based Framework for Computing Solar Radiation Using 3D City Models , 2017, ISPRS Int. J. Geo Inf..

[21]  D. Baldocchi,et al.  On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR , 2014 .

[22]  Jianjun Wang,et al.  A FAST SOLUTION TO LOCAL VIEWSHED COMPUTATION USING GRID-BASED DIGITAL ELEVATION MODELS , 1996 .

[23]  Nira Dyn,et al.  Meshfree Thinning of 3D Point Clouds , 2008, Found. Comput. Math..

[24]  Zhenyu Zhang,et al.  The effect of LiDAR data density on DEM accuracy , 2007 .

[25]  Bige Tunçer,et al.  Visibility Analysis for 3D Urban Environments , 2013 .

[26]  Michael E. Hodgson,et al.  Impact of Lidar Nominal Post-spacing on DEM Accuracy and Flood Zone Delineation , 2007 .

[27]  Carlo Ratti,et al.  A Digital Image of the City: 3D Isovists in Lynch's Urban Analysis , 2009 .

[28]  Wolfgang Baer,et al.  Advances in Terrain Augmented Geometric Pairing Algorithms for Operational Test , 2005 .

[29]  J. Foltête,et al.  A comparison of in situ and GIS landscape metrics for residential satisfaction modeling , 2016 .

[30]  David W. Messinger,et al.  Line-of-sight measurement in large urban areas using voxelized lidar , 2012, Other Conferences.

[31]  Geography: a place for GIS , 1993 .

[32]  Carsten Dachsbacher,et al.  Analyzing Visibility Configurations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[33]  Jason E. VanHorn,et al.  Urban 3D GIS Modeling of Terrorism Sniper Hazards , 2010 .

[34]  B. Koch,et al.  A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest , 2008, Sensors.

[35]  Jayson J. Murgoitio,et al.  Improved visibility calculations with tree trunk obstruction modeling from aerial LiDAR , 2013, Int. J. Geogr. Inf. Sci..

[36]  Marek K. Jakubowski,et al.  Tradeoffs between lidar pulse density and forest measurement accuracy , 2013 .

[37]  Byungyun Yang,et al.  GIS based 3-D landscape visualization for promoting citizen's awareness of coastal hazard scenarios in flood prone tourism towns , 2016 .

[38]  Michael J. Meitner,et al.  A route-based visibility analysis for landscape management , 2013 .

[39]  Daniel Cohen-Or,et al.  Visibility and Dead‐Zones in Digital Terrain Maps , 1995, Comput. Graph. Forum.

[40]  Denis J. Dean Improving the accuracy of forest viewsheds using triangulated networks and the visual permeability method , 1997 .

[41]  David O'Sullivan,et al.  International Journal of Geographical Information Science , 2022 .

[42]  Erich Tasser,et al.  Predicting scenic beauty of mountain regions , 2013 .

[43]  D. Fisher-Gewirtzman,et al.  Can visibility predict location? Visibility graph of food and drink facilities in the city , 2013 .

[44]  Perry Pei-Ju Yang,et al.  Viewsphere: A GIS-Based 3D Visibility Analysis for Urban Design Evaluation , 2007 .

[45]  P. F. Fischer,et al.  First experiments in viewshed uncertainty : simulating fuzzy viewsheds , 1992 .

[46]  Pawan Kumar Joshi,et al.  Mapping long-term land use and land cover change in the central Himalayan region using a tree-based ensemble classification approach , 2016 .

[47]  Filip Biljecki,et al.  Visibility Analysis in a Point Cloud Based on the Medial Axis Transform , 2015, UDMV.

[48]  Bill Hillier,et al.  Space is the machine , 1996 .

[49]  Jan Caha,et al.  Line-of-Sight Derived Indices: Viewing Angle Difference to a Local Horizon and the Difference of Viewing Angle and the Slope of Line of Sight , 2015 .

[50]  Michael E. Hodgson,et al.  Effects of lidar post‐spacing and DEM resolution to mean slope estimation , 2009, Int. J. Geogr. Inf. Sci..

[51]  Barnali M. Dixon,et al.  Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. , 2015 .

[52]  Anna Dickinson,et al.  Identifying related landmark tags in urban scenes using spatial and semantic clustering , 2015, Comput. Environ. Urban Syst..

[53]  Tobias Axell,et al.  Comparison between GPU and parallel CPU optimizations in viewshed analysis , 2015 .

[54]  Simon Kingham,et al.  Advancing visibility modelling algorithms for urban environments , 2010, Comput. Environ. Urban Syst..

[55]  William Mackaness,et al.  Mapping the visual magnitude of popular tourist sites in Edinburgh city , 2016 .

[56]  David W. Messinger,et al.  Line-of-sight analysis using voxelized discrete lidar , 2011, Defense + Commercial Sensing.

[57]  Martin Rutzinger,et al.  A new multi-scale 3D-GIS-approach for the assessment and dissemination of solar income of digital city models , 2016, Comput. Environ. Urban Syst..

[58]  Ian D. Bishop,et al.  Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables , 2007 .

[59]  P. Tarolli,et al.  Suitability of LiDAR point density and derived landform curvature maps for channel network extraction , 2010 .

[60]  Piotr Tompalski,et al.  Measuring visual pollution by outdoor advertisements in an urban street using intervisibilty analysis and public surveys , 2016, Int. J. Geogr. Inf. Sci..

[61]  Xuwei Chen,et al.  A comparison of usefulness of 2D and 3D representations of urban planning , 2015 .

[62]  Filip Biljecki,et al.  Applications of 3D City Models: State of the Art Review , 2015, ISPRS Int. J. Geo Inf..

[63]  Guohe Huang,et al.  A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution , 2008 .

[64]  Thomas H. Kolbe,et al.  Voluminator 2.0 - Speeding up the Approximation of the Volume of Defective 3d Building Models , 2016 .

[65]  Dennis R Becker,et al.  Ecological criteria, participant preferences and location models: a GIS approach toward ATV trail planning. , 2008 .

[66]  M. Verstraete,et al.  Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements , 2011 .

[67]  M. Benedikt,et al.  To Take Hold of Space: Isovists and Isovist Fields , 1979 .

[68]  D. Fisher-Gewirtzman,et al.  3D models as a platform for urban analysis and studies on human perception of space , 2012 .

[69]  Yingkui Li,et al.  Assessing resolution and source effects of digital elevation models on automated floodplain delineation: A case study from the Camp Creek Watershed, Missouri , 2012 .

[70]  Yu Liu,et al.  Optimization for viewshed analysis on GPU , 2011, 2011 19th International Conference on Geoinformatics.

[71]  Russell S. Harmon,et al.  Studies in Military Geography and Geology , 2004 .

[72]  Chen Zhuo,et al.  Parallel algorithm for viewshed analysis on a modern GPU , 2011, Int. J. Digit. Earth.

[73]  Sisi Zlatanova,et al.  Voxelization algorithms for geospatial applications , 2016, MethodsX.

[74]  Jianjun Wang,et al.  Generating Viewsheds without Using Sightlines , 2000 .

[75]  Michael Batty,et al.  Exploring Isovist Fields: Space and Shape in Architectural and Urban Morphology , 2001 .

[76]  R. Chris Olsen,et al.  Effects of lidar point density on bare earth extraction and DEM creation , 2009, Defense + Commercial Sensing.

[77]  Simon Kingham,et al.  Personalising the viewshed: Visibility analysis from the human perspective , 2015 .

[78]  Hugo Ledoux,et al.  Establishing and implementing a national 3D standard in The Netherlands: Entwicklung und Implementierung eines nationalen 3D Standards in den Niederlanden , 2013 .

[79]  Petra Šímová,et al.  How does data accuracy influence the reliability of digital viewshed models? A case study with wind turbines , 2015 .

[80]  Wang Feng,et al.  A parallel algorithm for viewshed analysis in three-dimensional Digital Earth , 2015 .

[81]  Erik J. Marsh,et al.  Eyes of the empire: A viewshed-based exploration of Wari site-placement decisions in the Sondondo Valley, Peru , 2015 .

[82]  David W. Messinger,et al.  Estimating sampling completeness of lidar datasets using voxel-based geometry , 2014, Defense + Security Symposium.

[83]  Lars Brabyn,et al.  Modelling landscape experience using “experions” , 2015 .

[84]  Dennis Ogburn,et al.  Assessing the level of visibility of cultural objects in past landscapes , 2006 .

[85]  Shaowen Wang,et al.  A parallel computing approach to viewshed analysis of large terrain data using graphics processing units , 2013, Int. J. Geogr. Inf. Sci..

[86]  Asya Natapov,et al.  Visibility of urban activities and pedestrian routes: An experiment in a virtual environment , 2016, Comput. Environ. Urban Syst..

[87]  Egbert Stolk,et al.  Solving Error Problems in Visibility Analysis for Urban Environments by Shifting from a Discrete to a Continuous Approach , 2008, 2008 International Conference on Computational Sciences and Its Applications.

[88]  Wayne D. Iverson,et al.  VIEWIT: computation of seen areas, slope, and aspect for land-use planning , 1975 .

[89]  E. L. Amidon,et al.  Delineating landscape view areas...a computer approach , 1968 .

[90]  Paolo Cignoni,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes , 2022 .

[91]  Mark Lake,et al.  Tailoring GIS Software for Archaeological Applications: An example concerning Viewshed Analysis , 1998 .

[92]  Arnold Bregt,et al.  Three Sampling Methods for Visibility Measures of Landscape Perception , 2007, COSIT.

[93]  Q. Guo,et al.  Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods , 2010 .

[94]  Denis J. Dean,et al.  AN ACCURACY ASSESSMENT OF VARIOUS GIS-BASED VIEWSHED DELINEATION TECHNIQUES , 2001 .

[95]  Thierry Joliveau,et al.  A New Algorithm for 3D Isovists , 2013 .