Transport at Interfaces in Lipid Membranes and Enantiomer Separation

We study the dynamics and formation of differently ordered lateral phases of interfacial lipid layers for two types of lipid systems, a vesicle-supported bilayer and a Langmuir–Blodgett monolayer, both in experiment and by simulation. Similarly, we investigate the dynamics of objects embedded in a simpler interface given by an air–water surface and demonstrate the surface-acoustic-wave-actuated separation of enantiomers (chiral objects) on the surface of the carrier fluid. It turns out that the dynamics and the separation of the phases do not only depend on parameters such as temperature, mobilities and line tension but also on the mechanics of the lipid layers subjected to exterior forces as, for instance, compression, extensional and shear forces in film-balance experiments. Since the mechanical behavior of lipid layers is viscoelastic, we use a modeling approach based on the incompressible Navier–Stokes equations with a viscoelastic stress term and a capillary term, a convective Jeffrey (Oldroyd) equation of viscoelasticity, and the Cahn–Hilliard equation with a transport term. The numerical simulations are based on C0-interior-penalty discontinuous-Galerkin methods for the Cahn–Hilliard equation. Model-validation results and the verification of the simulation results by experimental data are presented. The feasibility of enantiomer separation by surface-acoustic-wave-generated vorticity patterns is shown both experimentally and through numerical simulations. This technique is cost-effective and provides an extremely high time resolution of the dynamics of the separation process compared to more traditional approaches. The experimental setup is an enhanced Langmuir–Blodgett film balance with a surface-acoustic-wave-generated vorticity pattern of the fluid, where model enantiomers (custom-made photoresist particles) float on the surface of the carrier fluid. For the simulations, we propose a finite element immersed boundary method (FEIBM) for deformable enantiomers and a fictitious-domain approach based on a distributed Lagrangian multiplier finite element immersed boundary method (DLM-FEIBM) for rigid chiral objects, both of which lead to simulation results consistent with experiments.

[1]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[2]  H. Jeffreys,et al.  The Earth: Its Origin, History and Physical Constitution , 1925 .

[3]  M. Nicolet The Earth: its Origin, History, and Physical Constitution , 1929, Nature.

[4]  E. Guth,et al.  Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die Viskosität von Kugelsuspensionen , 1936 .

[5]  C. Zener Elasticity and anelasticity of metals , 1948 .

[6]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[8]  R. J. Gordon,et al.  Anisotropic Fluid Theory: A Different Approach to the Dumbbell Theory of Dilute Polymer Solutions , 1972 .

[9]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[10]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[11]  J. Miñones,et al.  Phospholipid monolayers , 1981 .

[12]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[13]  Knoll,et al.  Fractal growth of crystalline phospholipid domains in monomolecular layers. , 1986, Physical review letters.

[14]  H. Möhwald,et al.  Diffusion limited growth of crystalline domains in phospholipid monolayers , 1987 .

[15]  K. Kjaer,et al.  Phospholipid monolayers between fluid and solid states. , 1987, Biophysical journal.

[16]  李幼升,et al.  Ph , 1989 .

[17]  N. Tschoegl The Phenomenological Theory of Linear Viscoelastic Behavior , 1989 .

[18]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[19]  Daniel D. Joseph,et al.  Fluid Dynamics Of Viscoelastic Liquids , 1990 .

[20]  Roger Temam,et al.  Remark on the pressure boundary condition for the projection method , 1991 .

[21]  M. Angelova,et al.  Preparation of giant vesicles by external AC electric fields. Kinetics and applications , 1992 .

[22]  Hyuk Yu,et al.  In-plane steady shear viscosity of monolayers at the air/water interface and its dependence on free area , 1993 .

[23]  J. Melling INFORMATION AND THE REGULATION OF BIOTECHNOLOGY , 1994 .

[24]  O. G. Mouritsen,et al.  Phase separation dynamics and lateral organization of two-component lipid membranes. , 1995, Biophysical journal.

[25]  R. Rolandi,et al.  Surface Shear Viscosity and Phase Transitions of Monolayers at the Air-Water Interface , 1995 .

[26]  Reinhard Miller,et al.  Surface rheology of monolayers , 1996 .

[27]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[28]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[29]  E. Fernández-Cara,et al.  Some theoretical results concerning non newtonian fluids of the Oldroyd kind , 1998 .

[30]  Curtis W. Frank,et al.  An Interfacial Stress Rheometer To Study Rheological Transitions in Monolayers at the Air-Water Interface , 1999 .

[31]  E Gratton,et al.  Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. , 2000, Biophysical journal.

[32]  P. Lions,et al.  GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS , 2000 .

[33]  M. Lösche,et al.  Molecular chirality and domain shapes in lipid monolayers on aqueous surfaces. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[35]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[36]  L. Chupin Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation , 2002 .

[37]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[38]  Sarah L Veatch,et al.  Organization in lipid membranes containing cholesterol. , 2002, Physical review letters.

[39]  J. Zasadzinski,et al.  Magnetic Needle Viscometer for Langmuir Monolayers , 2002 .

[40]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[41]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[42]  F. Rondelez,et al.  Shear viscosity of langmuir monolayers in the low-density limit. , 2003, Physical review letters.

[43]  Petra Schwille,et al.  Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy* , 2003, Journal of Biological Chemistry.

[44]  S. Tremaine,et al.  On the Origin of Irregular Structure in Saturn's Rings , 2002, astro-ph/0211149.

[45]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[46]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[47]  D. Boffi,et al.  The immersed boundary method: a finite element approach , 2003 .

[48]  Franck Boyer,et al.  Numerical study of viscoelastic mixtures through a Cahn–Hilliard flow model , 2004 .

[49]  G. Lindblom,et al.  Lipid lateral diffusion in ordered and disordered phases in raft mixtures. , 2004, Biophysical journal.

[50]  Paul C. H. Li Microfluidic Lab-On-A-Chip for Chemical and Biological Analysis and Discovery , 2005 .

[51]  Sarah L Veatch,et al.  Seeing spots: complex phase behavior in simple membranes. , 2005, Biochimica et biophysica acta.

[52]  G. Lindblom,et al.  Lateral diffusion coefficients of separate lipid species in a ternary raft-forming bilayer: a Pfg-NMR multinuclear study. , 2005, Biophysical journal.

[53]  Peter Hänggi,et al.  Chiral separation in microflows. , 2005, Physical review letters.

[54]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[55]  Richard G. W. Anderson,et al.  Lipid rafts: at a crossroad between cell biology and physics , 2007, Nature Cell Biology.

[56]  Thomas G. Mason,et al.  Colloidal Alphabet Soup: Monodisperse Dispersions of Shape-Designed LithoParticles , 2007 .

[57]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[58]  Olivier Bernus,et al.  Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts. , 2008, Biophysical journal.

[59]  Roman Stocker,et al.  Separation of microscale chiral objects by shear flow. , 2009, Physical review letters.

[60]  Thermomechanic-electrical coupling in phospholipid monolayers near the critical point. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  F. Monroy,et al.  Shear rheology of lipid monolayers and insights on membrane fluidity , 2011, Proceedings of the National Academy of Sciences.

[62]  Siyoung Q. Choi,et al.  Active microrheology and simultaneous visualization of sheared phospholipid monolayers , 2011, Nature communications.

[63]  Thomas Franke,et al.  Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows , 2011, Comput. Vis. Sci..

[64]  Ronald H. W. Hoppe,et al.  An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method , 2012, J. Comput. Phys..

[65]  R. Hoppe,et al.  Comparative study of the dynamics of lipid membrane phase decomposition in experiment and simulation. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[66]  Amir Sadoughi,et al.  Transition from Newtonian to non-Newtonian surface shear viscosity of phospholipid monolayers , 2013 .

[67]  I. Norton,et al.  Phospholipids at the Interface: Current Trends and Challenges , 2013, International journal of molecular sciences.

[68]  W F Drew Bennett,et al.  Computer simulations of the phase separation in model membranes. , 2013, Faraday discussions.

[69]  L. Chupin Existence Results for the Flow of Viscoelastic Fluids with an Integral Constitutive Law , 2013 .

[70]  Thomas Franke,et al.  Numerical Simulation of Surface Acoustic Wave Actuated Separation of Rigid Enantiomers by the Fictitious Domain Lagrange Multiplier Method , 2015, Comput. Methods Appl. Math..

[71]  Ronald H. W. Hoppe,et al.  Numerical simulation of surface acoustic wave actuated enantiomer separation by the finite element immersed boundary method , 2015 .

[72]  R. Hoppe,et al.  Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the biharmonic problem , 2015, J. Num. Math..

[73]  A. Chorin The Numerical Solution of the Navier-Stokes Equations for an Incompressible Fluid , 2015 .