Monoidal topology : a categorical approach to order, metric, and topology
暂无分享,去创建一个
[1] S. Eilenberg,et al. Adjoint functors and triples , 1965 .
[2] R. Flagg,et al. Completeness in Continuity Spaces , 2008 .
[3] Robert Rosebrugh,et al. A basic distributive law , 2002 .
[4] E H Moore. Definition of Limit in General Integral Analysis. , 1915, Proceedings of the National Academy of Sciences of the United States of America.
[5] Dirk Hofmann,et al. On extensions of lax monads , 2004 .
[6] Jeanne Meisen,et al. Relations in regular categories , 1974 .
[7] Dirk Hofmann,et al. Local homeomorphisms via ultrafilter convergence , 2004 .
[8] Walter Tholen,et al. Categorical Structure of Closure Operators: With Applications to Topology, Algebra and Discrete Mathematics , 1995 .
[9] 花井 七郎. 可換な closure operators について , 1951 .
[10] K. Hofmann,et al. A Compendium of Continuous Lattices , 1980 .
[11] Pawel Waszkiewicz,et al. The formal ball model for -categories , 2010, Mathematical Structures in Computer Science.
[12] Peter J. Huber,et al. Homotopy theory in general categories , 1961 .
[13] R. Lowen,et al. Metrically generated theories , 2005 .
[14] Oswald Wyler,et al. Categories of Relations and Functional Relations , 2000, Appl. Categorical Struct..
[15] M. Barr,et al. Toposes, Triples and Theories , 1984 .
[16] Rudolf-E. Hoffmann,et al. Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications , 1981 .
[17] Dirk Hofmann,et al. Approaching Metric Domains , 2013, Appl. Categorical Struct..
[18] Dirk Hofmann,et al. Effective Descent Morphisms in Categories of Lax Algebras , 2004, Appl. Categorical Struct..
[19] Gunther Jäger,et al. A one-point compactification for lattice-valued convergence spaces , 2012, Fuzzy Sets Syst..
[20] E. J. McShane. Partial Orderings and Moore-Smith Limits , 1952 .
[21] J. Isbell. Six theorems about injective metric spaces , 1964 .
[22] Claudio Hermida. From coherent structures to universal properties , 2000 .
[23] Franck van Breugel,et al. An introduction to metric semantics: operational and denotational models for programming and specification languages , 2001, Theor. Comput. Sci..
[24] Roy Dyckhoff,et al. Total reflections, partial products, and hereditary factorizations , 1984 .
[25] Marcel Erné,et al. Scott convergence and scott topology in partially ordered sets II , 1981 .
[26] John W. Tukey,et al. Convergence and uniformity in topology , 1940 .
[27] Alan Day. Filter monads, continuous lattices and closure systems , 1975 .
[28] S. Mrówka. Compactness and product spaces , 1959 .
[29] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[30] Sabine Fenstermacher,et al. Sheaves In Geometry And Logic A First Introduction To Topos Theory , 2016 .
[31] D. V. Thampuran. Extended topology: Filters and convergence I , 1965 .
[32] Hans-Joachim Kowalsky,et al. Limesräume und Komplettierung , 1954 .
[33] V. E. Cazanescu. Algebraic theories , 2004 .
[34] Stephen Herman Kamnitzer. Protoreflections, relational algebras and topology. , 1974 .
[35] Ralph Kopperman,et al. Continuity Spaces: Reconciling Domains and Metric Spaces , 1997, Theor. Comput. Sci..
[36] Andre Scedrov,et al. Categories, allegories , 1990, North-Holland mathematical library.
[37] Marcello M. Bonsangue,et al. Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..
[38] Roy Dyckhoff,et al. Exponentiable morphisms, partial products and pullback complements , 1987 .
[39] Robert D. Rosebrugh,et al. Boundedness and Complete Distributivity , 2001, Appl. Categorical Struct..
[40] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[41] Ross Street,et al. Fibrations and Yoneda's lemma in a 2-category , 1974 .
[42] R. J. Wood. Ordered Sets via Adjunctions , 2002 .
[43] Jimmie Lawson. THE ROUND IDEAL COMPLETION VIA SOBRIFICATION , 2008 .
[44] Walter Tholen,et al. Universality of Coproducts in Categories of Lax Algebras , 2006, Appl. Categorical Struct..
[45] Dirk Hofmann,et al. Descent morphisms and a van Kampen Theorem in categories of lax algebras , 2012 .
[46] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .
[47] Paul Brock,et al. On Convergence Approach Spaces , 1998, Appl. Categorical Struct..
[48] C. Schubert. Lax Algebras: A Scenic Approach , 2006 .
[49] Walter Tholen,et al. Factorizations, Localizations, and the Orthogonal Subcategory Problem , 1983 .
[50] Solomon Feferman,et al. Categorical Foundations and Foundations of Category Theory , 1977 .
[51] Walter Tholen,et al. On the categorical meaning of Hausdorff and Gromov distances, I , 2009, 0901.0618.
[52] G. M. Kelly,et al. A $2$-categorical approach to change of base and geometric morphisms I , 1991 .
[53] Saunders MacLane,et al. Natural Associativity and Commutativity , 1963 .
[54] Aaron Klein. Relations in categories , 1970 .
[55] Robert Lowen,et al. A Kuratowski–Mrówka theorem in approach theory , 2005 .
[56] Claudio Pisani,et al. CONVERGENCE IN EXPONENTIABLE SPACES , 2001 .
[57] G. M. Kelly,et al. On topological quotient maps preserved by pullbacks or products , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.
[58] Jan Paseka,et al. Algebraic and Categorical Aspects of Quantales , 2008 .
[59] R. Lowen,et al. Local compactness in approach spaces II , 1998 .
[60] Rory B. B. Lucyshyn-Wright,et al. Domains occur among spaces as strict algebras among lax , 2011, Mathematical Structures in Computer Science.
[61] H. Herrlich,et al. Improving constructions in topology , 1991 .
[62] J. Isbell,et al. General function spaces, products and continuous lattices , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.
[63] E. Manes. Monads in topology , 2010 .
[64] R. Rosebrugh,et al. Normed Spaces and the Change of Base for Enriched Categories , 2008 .
[65] Jiří Adámek,et al. Continuous categories revisited. , 2003 .
[66] Marta Bunge. Coherent extensions and relational algebras , 1974 .
[67] Walter Tholen. A categorical guide to separation, compactness and perfectness. , 1999 .
[68] J. Kelley. Convergence in topology , 1950 .
[69] Robert Lowen. KURATOWSKI'S MEASURE OF NON-COMPACTNESS REVISITED , 1988 .
[70] Dirk Hofmann,et al. Kleisli compositions for topological spaces , 2006 .
[71] J. de Groot. An isomorphism principle in general topology , 1967 .
[72] Michael B. Smyth,et al. Effectively given Domains , 1977, Theor. Comput. Sci..
[73] W. Tholen. On Wyler's Taut lift theorem , 1978 .
[74] U. Höhle. Many Valued Topology and its Applications , 2001 .
[75] A. Bielecki. Sur une généralisation d'un théorème de Weierstrass , 1932 .
[76] Reinhard Börger. Coproducts and ultrafilters , 1987 .
[77] H. L. Smith,et al. A General Theory of Limits , 1922 .
[78] Hans-Joachim Kowalsky,et al. Beiträge zur topologischen Algebra , 1954 .
[79] Dirk Hofmann,et al. Approximation in quantale-enriched categories , 2010, ArXiv.
[80] Walter Tholen,et al. Categorical Foundations: A Functional Approach to General Topology , 2003 .
[81] Dirk Hofmann,et al. Triquotient maps via ultrafilter convergence , 2002 .
[82] Ralph Kopperman,et al. All topologies come from generalized metrics , 1988 .
[83] E. G. Manes. Compact Hausdorff objects , 1974 .
[84] Dirk Hofmann,et al. One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..
[85] E. Lowen,et al. A QUASITOPOS CONTAINING CONV AND MET AS FULL SUBCATEGORIES , 1988 .
[86] G. M. Kelly,et al. BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.
[87] Dirk Hofmann,et al. Exponentiation in V-categories , 2006 .
[88] Dirk Hofmann,et al. Axioms for Sequential Convergence , 2007, Appl. Categorical Struct..
[89] Gavin J. Seal. A Kleisli-based Approach to Lax Algebras , 2009, Appl. Categorical Struct..
[90] R. Lowen,et al. A new lax algebraic characterization of approach spaces , 2008 .
[91] Francis Borceux,et al. A Handbook of Categorical Algebra 3: Categories of sheaves , 1994 .
[92] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[93] Isar Stubbe,et al. Categorical structures enriched in a quantaloid: tensored and cotensored categories , 2004, math/0411366.
[94] Dirk Hofmann,et al. Probabilistic metric spaces as enriched categories , 2012, Fuzzy Sets Syst..
[95] Peter T. Johnstone,et al. On a Topological Topos , 1979 .
[96] Marcel Erné,et al. Standard completions for quasiordered sets , 1983 .
[97] J. Duskin. Variations on Beck's tripleability criterion , 1969 .
[98] R. Lowen. Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad , 1997 .
[99] L. Vietoris,et al. Bereiche zweiter Ordnung , 1922 .
[100] F. W. Lawvere,et al. The Category of Categories as a Foundation for Mathematics , 1966 .
[101] J. de Groot,et al. THE COMPACTNESS OPERATOR IN GENERAL TOPOLOGY , 1966 .
[102] K. I. Rosenthal. Quantales and their applications , 1990 .
[103] Gerhard Grimeisen. Gefilterte Summation von Filtern und iterierte Grenzprozesse. I , 1960 .
[104] Sergey A. Solovyov,et al. On the category Q-Mod , 2008 .
[105] R. Lowen. Approach Spaces A Common Supercategory of TOP and MET , 1989 .
[106] Proper maps for lax algebras and the Kuratowski-Mrówka Theorem , 2013 .
[107] Dirk Hofmann. Exponentiation for unitary structures , 2006 .
[108] R. J. Wood,et al. Constructive complete distributivity. I , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.
[109] Ross Street,et al. Variation through enrichment , 1983 .
[110] H. Herrlich. On the representability of partial morphisms in top and in related constructs , 1988 .
[111] George Janelidze,et al. Categorical Galois Theory: Revision and Some Recent Developments , 2004 .
[112] R. Lowen,et al. Lax algebras via initial monad morphisms: APP, TOP, MET and ORD , 2011 .
[113] S. Lack,et al. The formal theory of monads II , 2002 .
[114] Walter Tholen,et al. Effective descent maps of topological spaces , 1994 .
[115] Paul Brock,et al. Approach Spaces, Limit Tower Spaces, and Probabilistic Convergence Spaces , 1997, Appl. Categorical Struct..
[116] Ernest G. Manes,et al. Taut Monads and T0-spaces , 2002, Theor. Comput. Sci..
[117] R. Lowen,et al. A note on separation in AP , 2003 .
[118] Fuzzy functions and an extension of the category L-Top of Chang-Goguen L-topological spaces , 2002, math/0204139.
[119] Achim Jung,et al. Stably Compact Spaces and the Probabilistic Powerspace construction , 2004, DTMPP.
[120] Dirk Hofmann,et al. Lax algebra meets topology , 2012 .
[121] Pawel Waszkiewicz. On Domain Theory over Girard Quantales , 2009, Fundam. Informaticae.
[122] Dirk Hofmann,et al. Relative injectivity as cocompleteness for a class of distributors , 2008 .
[123] Dirk Hofmann,et al. Covering Morphisms in Categories of Relational Algebras , 2014, Appl. Categorical Struct..
[124] M. Stone. Applications of the theory of Boolean rings to general topology , 1937 .
[125] Marcel Erné. Z-Continuous Posets and Their Topological Manifestation , 1999, Appl. Categorical Struct..
[126] Dirk Hofmann,et al. Topological Features of Lax Algebras , 2003, Appl. Categorical Struct..
[127] R. Börger,et al. Cantors Diagonalprinzip für Kategorien , 1978 .
[128] Joachim Machner. $T$-algebras of the monad $L$-Fuzz , 1985 .
[129] Melvin Hochster,et al. Prime ideal structure in commutative rings , 1969 .
[130] G.S.H. Cruttwell,et al. A unified framework for generalized multicategories , 2009, 0907.2460.
[131] J. J. M. M. Rutten. Weighted colimits and formal balls in generalized metric spaces , 1997 .
[132] Isar Stubbe. Q-MODULES ARE Q-SUPLATTICES , 2008, 0809.4343.
[133] Albert Burroni. $T$-catégories (catégories dans un triple) , 1971 .
[134] Jirí Adámek,et al. Abstract and Concrete Categories - The Joy of Cats , 1990 .
[135] A. Tychonoff. Über die topologische Erweiterung von Räumen , 1930 .
[136] Horst Herrlich,et al. Factorizations, denseness, separation, and relatively compact objects , 1987 .
[137] W. Groß. Grundzüge der Mengenlehre , 1915 .
[138] Martín Hötzel Escardó,et al. Properly injective spaces and function spaces , 1998 .
[139] Nicolas Bourbaki,et al. Eléments de Mathématique , 1964 .
[140] Casimir Kuratowski. Evaluation de la classe borélienne ou projective d'un ensemble de points à l'aide des symboles logiques , 1931 .
[141] Walter Tholen,et al. Ordered Topological Structures , 2009 .
[142] U. Höhle. M-valued Sets and Sheaves over Integral Commutative CL-Monoids , 1992 .
[143] S. Lack,et al. Introduction to extensive and distributive categories , 1993 .
[144] Walter Tholen,et al. Tychonoff’s Theorem in a category , 1996 .
[145] A. Tarski,et al. Une contribution à la théorie de la mesure , 1930 .
[146] Jean Benabou,et al. Fibered categories and the foundations of naive category theory , 1985, Journal of Symbolic Logic.
[147] Dirk Hofmann,et al. Exponentiability in categories of lax algebras , 2003 .
[148] F. W. Lawvere,et al. Sets for Mathematics , 2003 .
[149] E. Kreyszig. Interaction between General Topology and Functional Analysis , 1997 .
[150] Robert Rosebrugh,et al. Distributive laws and factorization , 2002 .
[151] Berthold Schweizer,et al. Probabilistic Metric Spaces , 2011 .
[152] H. Hahn. Sur quelques points du calcul fonctionnel , 1908 .
[153] J. Lambek. Deductive systems and categories II. Standard constructions and closed categories , 1969 .
[154] A. Kock. Monads for which Structures are Adjoint to Units , 1995 .
[155] Oswald Wyler,et al. On the categories of general topology and topological algebra , 1971 .
[156] G. M. Kelly. A note on relations relative to a factorization system , 1991 .
[157] Philip S. Mulry,et al. MONAD COMPOSITIONS I: GENERAL CONSTRUCTIONS AND RECURSIVE DISTRIBUTIVE LAWS , 2007 .
[158] A. Gerlo,et al. Sober Approach Spaces are Firmly Reflective for the Class of Epimorphic Embeddings , 2006, Appl. Categorical Struct..
[159] R. Flagg,et al. Quantales and continuity spaces , 1997 .
[160] K. I. Rosenthal. The Theory of Quantaloids , 1996 .
[161] Gavin J. Seal,et al. On the monadic nature of categories of ordered sets , 2011 .
[162] Solomon Feferman,et al. Set-Theoretical foundations of category theory , 1969 .
[163] Christoph Schubert,et al. Extensions in the theory of lax algebras , 2010 .
[164] Dirk Hofmann,et al. Topological theories and closed objects , 2007 .
[165] Dirk Hofmann. An algebraic description of regular epimorphisms in topology , 2005 .
[166] Gavin J. Seal,et al. Order-adjoint monads and injective objects , 2010 .
[167] Jirí Adámek,et al. Algebraic Theories: A Categorical Introduction to General Algebra , 2010 .
[168] Gavin J. Seal. CANONICAL AND OP-CANONICAL LAX ALGEBRAS , 2005 .
[169] Saunders Mac Lane,et al. One universe as a foundation for category theory , 1969 .
[170] Walter Tholen,et al. Metric, topology and multicategory—a common approach , 2003 .
[171] F. Borceux. Handbook Of Categorical Algebra 1 Basic Category Theory , 2008 .
[172] Lars Birkedal,et al. The category-theoretic solution of recursive metric-space equations , 2010, Theor. Comput. Sci..
[173] Ernie Manes,et al. Taut Monads, Dynamic Logic and Determinism , 2007, MFPS.
[174] E. Čech. On Bicompact Spaces , 1937 .
[175] G. Birkhoff. Moore-Smith Convergence in General Topology , 1937 .
[176] E. Lowen,et al. Topological quasitopos hulls of categories containing topological and metric objects , 1989 .
[177] Günther Richter,et al. An Elementary Approach to Exponential Spaces , 2001, Appl. Categorical Struct..
[178] S. Niefield,et al. Cartesianness: topological spaces, uniform spaces, and affine schemes , 1982 .
[179] Walter Tholen,et al. Multiplicative structures over sup-lattices , 1989 .
[180] Oswald Wyler,et al. Lecture notes on Topoi and Quasitopoi , 1991 .
[181] Werner Gähler. Monads and Convergence , 1988 .
[182] E. Manes,et al. A triple theoretic construction of compact algebras , 1969 .
[183] P. Gabriel,et al. Lokal α-präsentierbare Kategorien , 1971 .
[184] Kim R. Wagner,et al. Solving Recursive Domain Equations with Enriched Categories. , 1994 .
[185] Hausdorff and Gromov Distances in Quantale−Enriched Categories , 2008 .
[186] Jimmie D. Lawson,et al. Stably compact spaces , 2010, Mathematical Structures in Computer Science.
[187] Dirk Hofmann,et al. Lawvere Completeness in Topology , 2007, Appl. Categorical Struct..
[188] Walter Tholen,et al. TOPOLOGY IN A CATEGORY: COMPACTNESS , 1996 .
[189] Th. Marny. On epireflective subcategories of topological categories , 1979 .
[190] Axel Möbus,et al. Alexandrov compactification of relational algebras , 1983 .