FROM LAPLACE TO SUPERNOVA SN 1987 A : BAYESIAN INFERENCE

The Bayesian approach to probability theory is presented as an alternative to the currently used long-run relative frequency approach, which does not o er clear, compelling criteria for the design of statistical methods. Bayesian probability theory o ers unique and demonstrably optimal solutions to well-posed statistical problems, and is historically the original approach to statistics. The reasons for earlier rejection of Bayesian methods are discussed, and it is noted that the work of Cox, Jaynes, and others answers earlier objections, giving Bayesian inference a rm logical and mathematical foundation as the correct mathematical language for quantifying uncertainty. The Bayesian approaches to parameter estimation and model comparison are outlined and illustrated by application to a simple problem based on the gaussian distribution. As further illustrations of the Bayesian paradigm, Bayesian solutions to two interesting astrophysical problems are outlined: the measurement of weak signals in a strong background, and the analysis of the neutrinos detected from supernova SN 1987A. A brief bibliography of astrophysically interesting applications of Bayesian inference is provided.

[1]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[2]  F. Guess Bayesian Statistics: Principles, Models, and Applications , 1990 .

[3]  G. L. Bretthorst Bayesian analysis. I. Parameter estimation using quadrature NMR models , 1990 .

[4]  S. F. Gull,et al.  DISTANCES TO CLUSTERS OF GALAXIES BY MAXIMUM-ENTROPY METHOD , 1989 .

[5]  C. Ray Smith,et al.  Bayesian Analysis Of Signals From Closely-Spaced Objects , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[6]  E. Fenimore,et al.  X-ray observations of the galactic center by SPARTAN 1 , 1988 .

[7]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[8]  John Skilling,et al.  Theory of Maximum Entropy Image Reconstruction , 1986 .

[9]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[10]  A. Zellner,et al.  Posterior odds ratios for selected regression hypotheses , 1980 .

[11]  I. Good,et al.  The Maximum Entropy Formalism. , 1979 .

[12]  Edwin T. Jaynes,et al.  Inference, Method, and Decision: Towards a Bayesian Philosophy of Science. , 1979 .

[13]  S. Gull,et al.  Image reconstruction from incomplete and noisy data , 1978, Nature.

[14]  S. Bowyer,et al.  Parameter estimation in X-ray astronomy , 1976 .

[15]  E. Jaynes The well-posed problem , 1973 .

[16]  K. Mardia Statistics of Directional Data , 1972 .

[17]  B. Frieden Restoring with maximum likelihood and maximum entropy. , 1972, Journal of the Optical Society of America.

[18]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[19]  D. Hearn Consistent analysis of gamma-ray astronomy experiments , 1969 .

[20]  Edwin T. Jaynes,et al.  Prior Probabilities , 1968, Encyclopedia of Machine Learning.

[21]  Ward Edwards,et al.  Bayesian statistical inference for psychological research. , 1963 .

[22]  R. T. Cox The Algebra of Probable Inference , 1962 .

[23]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[24]  H. Jeffreys On the relation between direct and inverse methods in statistics , 1937 .

[25]  Sibusiso Sibisi,et al.  Quantified Maxent: An NMR Application , 1990 .

[26]  G. L. Bretthorst,et al.  AN INTRODUCTION TO PARAMETER ESTIMATION USING BAYESIAN PROBABILITY THEORY , 1990 .

[27]  Stephen F. Gull,et al.  Developments in Maximum Entropy Data Analysis , 1989 .

[28]  G. Larry Bretthorst,et al.  Bayesian Model Selection: Examples Relevant to NMR , 1989 .

[29]  C. Ray Smith,et al.  From Rationality and Consistency to Bayesian Probability , 1989 .

[30]  K. Horne,et al.  Maximum Entropy Tomography of Accretion Discs from Their Emission Lines , 1989 .

[31]  J. Skilling Classic Maximum Entropy , 1989 .

[32]  C. R. Smith,et al.  From Chirp to Chip, a Beginning , 1989 .

[33]  C. Burrows,et al.  The Application of Maximum Entropy Techniques to Chopped Astronomical Infrared Data , 1989 .

[34]  E. T. Jaynesz,et al.  Clearing up Mysteries { the Original Goal , 1989 .

[35]  E. T. Jaynes,et al.  The Relation of Bayesian and Maximum Entropy Methods , 1988 .

[36]  G. Larry Bretthorst,et al.  Excerpts from Bayesian Spectrum Analysis and Parameter Estimation , 1988 .

[37]  E. T. Jaynes,et al.  How Does the Brain Do Plausible Reasoning , 1988 .

[38]  E. Jaynes Detection of Extra-Solar System Planets , 1988 .

[39]  Marvin H. J. Guber Bayesian Spectrum Analysis and Parameter Estimation , 1988 .

[40]  P. Fougere Maximum Entropy Calculations on a Discrete Probability Space , 1988 .

[41]  S. Gull Bayesian Inductive Inference and Maximum Entropy , 1988 .

[42]  David H. Bailey,et al.  Algorithms and applications , 1988 .

[43]  E. T. Jaynes,et al.  Bayesian Spectrum and Chirp Analysis , 1987 .

[44]  R. Narayan,et al.  Maximum Entropy Image Restoration in Astronomy , 1986 .

[45]  Arnold Zellner,et al.  Biased predictors, rationality and the evaluation of forecasts , 1986 .

[46]  J. Justice Maximum entropy and bayesian methods in applied statistics , 1986 .

[47]  E. T. Jaynes,et al.  Papers on probability, statistics and statistical physics , 1983 .

[48]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[49]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[50]  E. Jaynes,et al.  Confidence Intervals vs Bayesian Intervals , 1976 .

[51]  C. Chatfield,et al.  Statistics for physicists , 1971 .

[52]  David Lindley,et al.  Fiducial Distributions and Bayes' Theorem , 1958 .