A 7/2-Approximation Algorithm for the Maximum Duo-Preservation String Mapping Problem

This paper presents a simple 7/2-approximation algorithm for the Maximum Duo-Preservation String Mapping (MPSM) problem. This problem is complementary to the classical and well studied min common string partition problem (MCSP), that computes the minimal edit distance between two strings when the only operation allowed is to shift blocks of characters. The algorithm improves on the previously best-known 4-approximation algorithm by computing a simple local optimum.

[1]  Petr Kolman,et al.  Reversal Distance for Strings with Duplicates: Linear Time Approximation using Hitting Set , 2006, Electron. J. Comb..

[2]  Christian Komusiewicz,et al.  A Fixed-Parameter Algorithm for Minimum Common String Partition with Few Duplications , 2013, WABI.

[3]  Nicolas Boria,et al.  Improved Approximation for the Maximum Duo-Preservation String Mapping Problem , 2014, WABI.

[4]  Marek Chrobak,et al.  The greedy algorithm for the minimum common string partition problem , 2005, TALG.

[5]  Nagiza F. Samatova,et al.  Solving the maximum duo-preservation string mapping problem with linear programming , 2014, Theor. Comput. Sci..

[6]  Petr Kolman,et al.  Approximating reversal distance for strings with bounded number of duplicates , 2005, Discret. Appl. Math..

[7]  Carsten Lund,et al.  The Approximation of Maximum Subgraph Problems , 1993, ICALP.

[8]  Graham Cormode,et al.  The string edit distance matching problem with moves , 2007, TALG.

[9]  Christian Komusiewicz,et al.  Minimum Common String Partition Parameterized by Partition Size Is Fixed-Parameter Tractable , 2013, SODA.

[10]  Peter Damaschke,et al.  Minimum Common String Partition Parameterized , 2008, WABI.

[11]  Xin Chen,et al.  Assignment of orthologous genes via genome rearrangement , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[12]  Riccardo Dondi,et al.  Parameterized Tractability of the Maximum-Duo Preservation String Mapping Problem , 2015, Theor. Comput. Sci..

[13]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[14]  Hong Zhu,et al.  Minimum Common String Partition Revisited , 2010, FAW.

[15]  Petr Kolman,et al.  Minimum Common String Partition Problem: Hardness and Approximations , 2004, Electron. J. Comb..

[16]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[17]  Krister M. Swenson,et al.  Approximating the true evolutionary distance between two genomes , 2008, JEAL.

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .