The canonical frame of purified gravity

In the recently introduced gauge theory of translations, dubbed Coincident General Relativity (CGR), gravity is described with neither torsion nor curvature in the spacetime affine geometry. The action of the theory enjoys an enhanced symmetry and avoids the second derivatives that appear in the conventional Einstein–Hilbert action. While it implies the equivalent classical dynamics, the improved action principle can make a difference in considerations of energetics, thermodynamics and quantum theory. This paper reports on possible progress in those three aspects of gravity theory. In the so-called purified gravity, (1) energy–momentum is described locally by a conserved, symmetric tensor, (2) the Euclidean path integral is convergent without the addition of boundary or regulating terms and (3) it is possible to identify a canonical frame for quantization.

[1]  L. Heisenberg,et al.  Teleparallel Palatini theories , 2018, Journal of Cosmology and Astroparticle Physics.

[2]  T. Koivisto An integrable geometrical foundation of gravity , 2018, International Journal of Geometric Methods in Modern Physics.

[3]  L. Heisenberg,et al.  Coincident general relativity , 2017, Physical Review D.

[4]  Dennis Lehmkuhl Why Einstein did not believe that General Relativity geometrizes gravity , 2014 .

[5]  J. G. Pereira,et al.  Teleparallel Gravity: An Introduction , 2012 .

[6]  L. Sindoni Emergent Models for Gravity: an Overview of Microscopic Models , 2011, 1110.0686.

[7]  H. Goenner On the History of Unified Field Theories , 2004, Living reviews in relativity.

[8]  S. S. Xulu The Energy-Momentum Problem in General Relativity , 2003, hep-th/0308070.

[9]  J. M. Nester,et al.  Pseudotensors and quasilocal energy-momentum , 1998, gr-qc/9809040.

[10]  Chiang-Mei Chen,et al.  Pseudotensors and quasilocal gravitational energy-momentum , 1998 .

[11]  J. M. Aguirregabiria,et al.  Energy and angular momentum of charged rotating black holes , 1995, gr-qc/9501002.

[12]  J. Mccrea,et al.  Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance , 1994, gr-qc/9402012.

[13]  F. Cooperstock Energy localization in general relativity: A new hypothesis , 1992, Foundations of Physics.

[14]  H. Bondi Conservation and non-conservation in general relativity , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[16]  P. Dirac General Theory of Relativity , 1975 .

[17]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .

[18]  S. Christensen Quantum Theory of Gravity , 1984 .

[19]  R. Wallner Notes on gauge theory and gravitation , 1981 .

[20]  A. Schild,et al.  Solutions of the Einstein and Einstein‐Maxwell Equations , 1969 .

[21]  A. Einstein Hamiltonsches Prinzip und allgemeine Relativitätstheorie , 1923 .