Molecular Acrobatics in Polycyclic Frames: Synthesis of "Kurmanediol" via Post-synthetic Modification of Cage Molecules by Olefinic Metathesis.

We report late-stage ring-opening metathesis (ROM), ring-rearrangement metathesis (RRM), and ring-closing metathesis (RCM) approaches to generate expanded pentacycloundecane (PCUD) cage derivatives. These higher-order intricate polycyclic cage systems are aesthetically pleasing and structurally intriguing. Their assembly maintains molecular symmetry during the entire synthetic sequence. To this end, metathesis-based catalysts are used to execute the ROM, RRM, and RCM strategies. The synthetic approach to these cage polycycles involves the Diels-Alder reaction, [2 + 2] photocycloaddition, RRM, ROM, and RCM as key steps.

[1]  S. Kotha,et al.  Late-stage Modification of Cage Diones by Tandem Metathesis. , 2022, Chemistry, an Asian journal.

[2]  S. Kotha,et al.  Ring-Rearrangement Metathetic Approach to Fused 6/5/6/5/6-Oxacyclic Ring System and Bipentalene Derivatives , 2022, Synlett.

[3]  S. Kotha,et al.  Design and Synthesis of Cage Molecules as High Energy Density Materials for Aerospace Applications , 2020 .

[4]  C. Bochet,et al.  Photochemical methods in metathesis reactions. , 2020, Organic & biomolecular chemistry.

[5]  Ying Han,et al.  Synthesis of bi-halogenated spiropolycyclic cage compounds , 2020 .

[6]  S. Kotha,et al.  Application of ring-rearrangement metathesis in organic synthesis: A grand design , 2019 .

[7]  S. Kotha,et al.  Synthetic Strategies to Diverse Polyquinanes via Olefin Metathesis: Access to the Basic Core of Crinipellin, Presilphiperfolanol and Cucumin. , 2019, The Journal of organic chemistry.

[8]  F. Sarabia,et al.  Recent Advances in Total Synthesis via Metathesis Reactions , 2018, Synthesis.

[9]  R. Ben Othman,et al.  Natural products and ring-closing metathesis: synthesis of sterically congested olefins. , 2018, Natural product reports.

[10]  S. Nanda,et al.  Exploration of Ring Rearrangement Metathesis Reaction: A General and Flexible Approach for the Rapid Construction [5,n]-Fused Bicyclic Systems en Route to Linear Triquinanes. , 2018, The Journal of organic chemistry.

[11]  C. Lindsley,et al.  Classics in Chemical Neuroscience: Memantine. , 2017, ACS chemical neuroscience.

[12]  J. Plumet,et al.  Ring Rearrangement Metathesis in 7-Oxabicyclo[2.2.1]heptene (7-Oxanorbornene) Derivatives. Some Applications in Natural Product Chemistry , 2017, Natural product communications.

[13]  Yijun Shi,et al.  Synthesis of 4,4'-bipentacyclo[5.4.0.02,6.03,10.05,9]undecane , 2017 .

[14]  Erdin Dalkılıç,et al.  Unexpected regioselectivity observed in the bromination and epoxidation reactions of p-benzoquinone-fused norbornadiene: An experimental and computational study , 2017 .

[15]  S. Kotha,et al.  Ring‐Rearrangement‐Metathesis Approach to Polycycles: Substrate‐Controlled Stereochemical Outcome During Grignard Addition , 2016 .

[16]  A. Borse,et al.  An Improved and Scalable Synthesis of Insensitive High Explosive 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane (TEX) , 2016 .

[17]  David A Winkler,et al.  Validating Eaton's Hypothesis: Cubane as a Benzene Bioisostere. , 2016, Angewandte Chemie.

[18]  Yijun Shi,et al.  Synthesis of 4,4′-spirobi[pentacyclo[5.4.0.02,6.03,10.05,9]undecane] , 2015 .

[19]  Weihua Zhu,et al.  A new design strategy on cage insensitive high explosives: symmetrically replacing carbon atoms by nitrogen atoms followed by the introduction of N-oxides , 2015 .

[20]  Shaibal Banerjee,et al.  Recent applications of ring-rearrangement metathesis in organic synthesis , 2015, Beilstein journal of organic chemistry.

[21]  S. Kotha,et al.  Design and synthesis of fused polycycles via Diels–Alder reaction and ring-rearrangement metathesis as key steps , 2015, Beilstein journal of organic chemistry.

[22]  Arindrajit Chowdhury,et al.  Nitro-substituted bishomocubanes: synthesis, characterization, and application as energetic materials. , 2014, Chemistry, an Asian journal.

[23]  Heming Xiao,et al.  Catalytic behavior of hydrogen radicals in the thermal decomposition of crystalline furoxan: DFT-based molecular dynamics simulations , 2014 .

[24]  Shane M. Wilkinson,et al.  The first CNS-active carborane: A novel P2X7 receptor antagonist with antidepressant activity. , 2014, ACS chemical neuroscience.

[25]  Gang Zhang,et al.  Organic cage compounds--from shape-persistency to function. , 2014, Chemical Society reviews.

[26]  M. Kimber,et al.  The regioselective outcome of ring rearrangement metathesis transformations performed on bicyclo[2.2.2]oct-2-ene derivatives , 2013 .

[27]  Arindrajit Chowdhury,et al.  Synthesis and pyrolysis studies of bis(nitratomethyl)-1,3-bishomocubane—A high-energy high-density liquid , 2013 .

[28]  P. Schreiner,et al.  The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. , 2013, Chemical reviews.

[29]  Oluseye K. Onajole,et al.  Novel polycyclic 'cage'-1,2-diamines as potential anti-tuberculosis agents. , 2012, European journal of medicinal chemistry.

[30]  Katja Petzold,et al.  Pentacycloundecane‐diol‐Based HIV‐1 Protease Inhibitors: Biological Screening, 2D NMR, and Molecular Simulation Studies , 2012, ChemMedChem.

[31]  W. Geldenhuys,et al.  Polycyclic Cage Structures as Lipophilic Scaffolds for Neuroactive Drugs , 2012, ChemMedChem.

[32]  Oluseye K. Onajole,et al.  SQ109 analogues as potential antimicrobial candidates , 2011, Medicinal Chemistry Research.

[33]  Katja Petzold,et al.  Synthesis and structural studies of pentacycloundecane-based HIV-1 PR inhibitors: a hybrid 2D NMR and docking/QM/MM/MD approach. , 2011, European journal of medicinal chemistry.

[34]  Oluseye K. Onajole,et al.  In Vitro Antifungal and Antibacterial Activities of Pentacycloundecane Tetra‐Amines , 2011, Chemical biology & drug design.

[35]  Dmitry I. Sharapa,et al.  The chemistry of D3-trishomocubane , 2010 .

[36]  M. Keshavarz Simple Relationship for Predicting Impact Sensitivity of Nitroaromatics, Nitramines, and Nitroaliphatics , 2010 .

[37]  R. Grubbs,et al.  Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. , 2010, Chemical reviews.

[38]  R. Sakai,et al.  Regioselective Domino Metathesis of 7-Oxanorbornenes and Its Application to the Synthesis of Biologically Active Glutamate Analogues. , 2008, European journal of organic chemistry.

[39]  S. Blechert,et al.  Ring-rearrangement metathesis. , 2007, Chemistry, an Asian journal.

[40]  W. Geldenhuys,et al.  Multifunctional neuroprotective–neurorescue drugs for Parkinson’s disease , 2007 .

[41]  Chanchal K. Malik,et al.  Domino metathesis involving ROM-RCM of substituted norbornenes. Rapid access to densely functionalized tricyclic bridged and condensed ring systems. , 2007, Organic letters.

[42]  A. Gradillas,et al.  Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations. , 2006, Angewandte Chemie.

[43]  S. Blechert,et al.  Ring-rearrangement metathesis of bicyclic amino acid derivatives , 2006 .

[44]  Ping Chen,et al.  Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. , 2005, The Journal of antimicrobial chemotherapy.

[45]  W. Geldenhuys,et al.  NGP1-01, a lipophilic polycyclic cage amine, is neuroprotective in focal ischemia , 2005, Neuroscience Letters.

[46]  Y. Shu,et al.  Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. , 2005, The journal of physical chemistry. B.

[47]  W. Geldenhuys,et al.  Pharmacology and structure‐activity relationships of bioactive polycyclic cage compounds: A focus on pentacycloundecane derivatives , 2005, Medicinal research reviews.

[48]  Volodymyr Sashuk,et al.  Nitro-substituted Hoveyda-Grubbs ruthenium carbenes: enhancement of catalyst activity through electronic activation. , 2004, Journal of the American Chemical Society.

[49]  B. Rice,et al.  Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules , 2002 .

[50]  P. Eaton,et al.  Polynitrocubanes: Advanced High-Density, High-Energy Materials** , 2000 .

[51]  M. Mahkam,et al.  Synthesis and characterization of cubane polyamides , 2000 .

[52]  B. Ganguly,et al.  Synthesis of a novel cage-functionalized chiral binaphthol host: a potential new agent for enantioselective recognition of chiral ammonium salts , 1999 .

[53]  V. Rawal,et al.  The Intramolecular Diels−Alder Reactions of Photochemically Generated trans-Cycloalkenones , 1999 .

[54]  T. J. Chow,et al.  A NMR Chemical Shift Analysis on Two Nonconjugated Tri-π-Systems , 1999 .

[55]  F. Owens Molecular orbital calculation of decomposition pathways of nitrocubanes and nitroazacubanes , 1999 .

[56]  S. Alihodžić,et al.  A SIMPLE PROCEDURE FOR PREPARING ANNULATED P-BENZOQUINONES. IMPROVED SYNTHESIS OF 1,4-DIHYDRO-1,4-METHANONAPHTHALENE-5,8-DIONE , 1998 .

[57]  S. Kotha,et al.  Synthesis of conformationally constrained α-amino acid derivatives using ethyl isocyanoacetate as glycine equivalent , 1997 .

[58]  G. Mehta,et al.  Synthesis of Polyquinane Natural Products: An Update. , 1997, Chemical reviews.

[59]  C. Crudden,et al.  Cobalt-Catalyzed [2.pi. + 2.pi. + 2.pi.] (Homo-Diels-Alder) and [2.pi. + 2.pi. + 4.pi.] Cycloadditions of Bicyclo[2.2.1]hepta-2,5-dienes , 1995 .

[60]  R. Moriarty,et al.  Crown ether ionophores. Construction of neutral carrier ion-selective electrodes , 1993 .

[61]  J. Chandrasekhar,et al.  Roofed polyquinanes: synthesis and electronic structure , 1991 .

[62]  G. Mehta,et al.  Synthetic studies towards prismanes: 1,4-Bishomo-[6]-prismane (“garudane”) , 1991 .

[63]  D. Oliver,et al.  Synthesis and biological activity of D3-trishomocubyl-4-amines. , 1991, Journal of medicinal chemistry.

[64]  H. Ammon,et al.  Synthesis of 2,2,4,4-tetranitroadamantane , 1990 .

[65]  E. Ōsawa,et al.  Strain, orbital interaction, and conformation of propella[34]prismane and its precursor diolefin , 1990 .

[66]  G. Mehta,et al.  Steady-state and laser flash photolysis studies of norbornenobenzoquinones and their Diels-Alder adducts , 1989 .

[67]  B. Levine,et al.  Synthetic studies on arene-olefin cycloadditions. 10. A concise, stereocontrolled total synthesis of (.+-.)-laurenene , 1988 .

[68]  W. Fessner,et al.  Pagodanë: the efficient synthesis of a novel, versatile molecular framework , 1987 .

[69]  L. Paquette,et al.  Total synthesis of dodecahedrane , 1983 .

[70]  P. Schleyer,et al.  Syntheses and relative stability of (D3)-trishomocubane (pentacyclo[6.3.0.02,6.03,10.05,9]undecane), the pentacycloundecane stabilomer , 1977 .

[71]  D. Tupper,et al.  Adamantane and protoadamantanealkanamines as potential anti-Parkinson agents. , 1976, Journal of medicinal chemistry.

[72]  P. Schleyer A SIMPLE PREPARATION OF ADAMANTANE , 1957 .

[73]  S. Durani,et al.  Constrained phenylalanyl peptides via a [2+2+2]-cycloaddition strategy , 2000 .

[74]  Josef Michl,et al.  Toward a molecular-size tinkertoy construction set. Preparation of terminally functionalized [n]staffanes from [1.1.1]propellane , 1992 .

[75]  R. Cookson,et al.  586. Photochemical cyclisation of diels–alder adducts , 1964 .